992 resultados para Quantitative reconstruction
Resumo:
This report describes some preliminary experiments on the use of the relaxation technique for the reconstruction of the elements of a matrix given their various directional sums (or projections).
Resumo:
Over the past decade, many powerful data mining techniques have been developed to analyze temporal and sequential data. The time is now fertile for addressing problems of larger scope under the purview of temporal data mining. The fourth SIGKDD workshop on temporal data mining focused on the question: What can we infer about the structure of a complex dynamical system from observed temporal data? The goals of the workshop were to critically evaluate the need in this area by bringing together leading researchers from industry and academia, and to identify promising technologies and methodologies for doing the same. We provide a brief summary of the workshop proceedings and ideas arising out of the discussions.
Resumo:
A cooperative integration of stereopsis and shape-from-shading is presented. The integration makes the process of D surface reconstruction better constrained and more reliable. It also obviates the need for surface boundary conditions, and explicit information about the surface albedo and the light source direction, which can now be estimated in an iterative manner
Resumo:
Purpose: The authors aim at developing a pseudo-time, sub-optimal stochastic filtering approach based on a derivative free variant of the ensemble Kalman filter (EnKF) for solving the inverse problem of diffuse optical tomography (DOT) while making use of a shape based reconstruction strategy that enables representing a cross section of an inhomogeneous tumor boundary by a general closed curve. Methods: The optical parameter fields to be recovered are approximated via an expansion based on the circular harmonics (CH) (Fourier basis functions) and the EnKF is used to recover the coefficients in the expansion with both simulated and experimentally obtained photon fluence data on phantoms with inhomogeneous inclusions. The process and measurement equations in the pseudo-dynamic EnKF (PD-EnKF) presently yield a parsimonious representation of the filter variables, which consist of only the Fourier coefficients and the constant scalar parameter value within the inclusion. Using fictitious, low-intensity Wiener noise processes in suitably constructed ``measurement'' equations, the filter variables are treated as pseudo-stochastic processes so that their recovery within a stochastic filtering framework is made possible. Results: In our numerical simulations, we have considered both elliptical inclusions (two inhomogeneities) and those with more complex shapes (such as an annular ring and a dumbbell) in 2-D objects which are cross-sections of a cylinder with background absorption and (reduced) scattering coefficient chosen as mu(b)(a)=0.01mm(-1) and mu('b)(s)=1.0mm(-1), respectively. We also assume mu(a) = 0.02 mm(-1) within the inhomogeneity (for the single inhomogeneity case) and mu(a) = 0.02 and 0.03 mm(-1) (for the two inhomogeneities case). The reconstruction results by the PD-EnKF are shown to be consistently superior to those through a deterministic and explicitly regularized Gauss-Newton algorithm. We have also estimated the unknown mu(a) from experimentally gathered fluence data and verified the reconstruction by matching the experimental data with the computed one. Conclusions: The PD-EnKF, which exhibits little sensitivity against variations in the fictitiously introduced noise processes, is also proven to be accurate and robust in recovering a spatial map of the absorption coefficient from DOT data. With the help of shape based representation of the inhomogeneities and an appropriate scaling of the CH expansion coefficients representing the boundary, we have been able to recover inhomogeneities representative of the shape of malignancies in medical diagnostic imaging. (C) 2012 American Association of Physicists in Medicine. [DOI: 10.1118/1.3679855]
Resumo:
Rathour RK, Narayanan R. Influence fields: a quantitative framework for representation and analysis of active dendrites. J Neurophysiol 107: 2313-2334, 2012. First published January 18, 2012; doi:10.1152/jn.00846.2011.-Neuronal dendrites express numerous voltage-gated ion channels (VGICs), typically with spatial gradients in their densities and properties. Dendritic VGICs, their gradients, and their plasticity endow neurons with information processing capabilities that are higher than those of neurons with passive dendrites. Despite this, frameworks that incorporate dendritic VGICs and their plasticity into neurophysiological and learning theory models have been far and few. Here, we develop a generalized quantitative framework to analyze the extent of influence of a spatially localized VGIC conductance on different physiological properties along the entire stretch of a neuron. Employing this framework, we show that the extent of influence of a VGIC conductance is largely independent of the conductance magnitude but is heavily dependent on the specific physiological property and background conductances. Morphologically, our analyses demonstrate that the influences of different VGIC conductances located on an oblique dendrite are confined within that oblique dendrite, thus providing further credence to the postulate that dendritic branches act as independent computational units. Furthermore, distinguishing between active and passive propagation of signals within a neuron, we demonstrate that the influence of a VGIC conductance is spatially confined only when propagation is active. Finally, we reconstruct functional gradients from VGIC conductance gradients using influence fields and demonstrate that the cumulative contribution of VGIC conductances in adjacent compartments plays a critical role in determining physiological properties at a given location. We suggest that our framework provides a quantitative basis for unraveling the roles of dendritic VGICs and their plasticity in neural coding, learning, and homeostasis.
Resumo:
Diffuse optical tomography (DOT) is one of the ways to probe highly scattering media such as tissue using low-energy near infra-red light (NIR) to reconstruct a map of the optical property distribution. The interaction of the photons in biological tissue is a non-linear process and the phton transport through the tissue is modelled using diffusion theory. The inversion problem is often solved through iterative methods based on nonlinear optimization for the minimization of a data-model misfit function. The solution of the non-linear problem can be improved by modeling and optimizing the cost functional. The cost functional is f(x) = x(T)Ax - b(T)x + c and after minimization, the cost functional reduces to Ax = b. The spatial distribution of optical parameter can be obtained by solving the above equation iteratively for x. As the problem is non-linear, ill-posed and ill-conditioned, there will be an error or correction term for x at each iteration. A linearization strategy is proposed for the solution of the nonlinear ill-posed inverse problem by linear combination of system matrix and error in solution. By propagating the error (e) information (obtained from previous iteration) to the minimization function f(x), we can rewrite the minimization function as f(x; e) = (x + e)(T) A(x + e) - b(T)(x + e) + c. The revised cost functional is f(x; e) = f(x) + e(T)Ae. The self guided spatial weighted prior (e(T)Ae) error (e, error in estimating x) information along the principal nodes facilitates a well resolved dominant solution over the region of interest. The local minimization reduces the spreading of inclusion and removes the side lobes, thereby improving the contrast, localization and resolution of reconstructed image which has not been possible with conventional linear and regularization algorithm.
Resumo:
We address the problem of high-resolution reconstruction in frequency-domain optical-coherence tomography (FDOCT). The traditional method employed uses the inverse discrete Fourier transform, which is limited in resolution due to the Heisenberg uncertainty principle. We propose a reconstruction technique based on zero-crossing (ZC) interval analysis. The motivation for our approach lies in the observation that, for a multilayered specimen, the backscattered signal may be expressed as a sum of sinusoids, and each sinusoid manifests as a peak in the FDOCT reconstruction. The successive ZC intervals of a sinusoid exhibit high consistency, with the intervals being inversely related to the frequency of the sinusoid. The statistics of the ZC intervals are used for detecting the frequencies present in the input signal. The noise robustness of the proposed technique is improved by using a cosine-modulated filter bank for separating the input into different frequency bands, and the ZC analysis is carried out on each band separately. The design of the filter bank requires the design of a prototype, which we accomplish using a Kaiser window approach. We show that the proposed method gives good results on synthesized and experimental data. The resolution is enhanced, and noise robustness is higher compared with the standard Fourier reconstruction. (c) 2012 Optical Society of America
Resumo:
Helix helix interactions are fundamental to many biological signals and systems and are found in homo- or heteromultimerization of signaling molecules as well as in the process of virus entry into the host. In HIV, virus-host membrane fusion during infection is mediated by the formation of six-helix bundles (6HBs) from homotrimers of gp41, from which a number of synthetic peptides have been derived as antagonists of virus entry. Using a yeast surface two-hybrid (YS2H) system, a platform designed to detect protein-protein interactions occurring through a secretory pathway, we reconstituted 6HB complexes on the yeast surface, quantitatively measured the equilibrium and kinetic constants of soluble 6HB, and delineated the residues influencing homo-oligomeric and hetero-oligomeric coiled-coil interactions. Hence, we present YS2H as a platform for the facile characterization and design of antagonistic peptides for inhibition of HIV and many other enveloped viruses relying on membrane fusion for infection, as well as cellular signaling events triggered by hetero-oligomeric coiled coils.
Resumo:
Real-time image reconstruction is essential for improving the temporal resolution of fluorescence microscopy. A number of unavoidable processes such as, optical aberration, noise and scattering degrade image quality, thereby making image reconstruction an ill-posed problem. Maximum likelihood is an attractive technique for data reconstruction especially when the problem is ill-posed. Iterative nature of the maximum likelihood technique eludes real-time imaging. Here we propose and demonstrate a compute unified device architecture (CUDA) based fast computing engine for real-time 3D fluorescence imaging. A maximum performance boost of 210x is reported. Easy availability of powerful computing engines is a boon and may accelerate to realize real-time 3D fluorescence imaging. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. http://dx.doi.org/10.1063/1.4754604]
Resumo:
A novel approach that can more effectively use the structural information provided by the traditional imaging modalities in multimodal diffuse optical tomographic imaging is introduced. This approach is based on a prior image-constrained-l(1) minimization scheme and has been motivated by the recent progress in the sparse image reconstruction techniques. It is shown that the proposed framework is more effective in terms of localizing the tumor region and recovering the optical property values both in numerical and gelatin phantom cases compared to the traditional methods that use structural information. (C) 2012 Optical Society of America
Resumo:
We demonstrate quantitative optical property and elastic property imaging from ultrasound assisted optical tomography data. The measurements, which are modulation depth M and phase phi of the speckle pattern, are shown to be sensitively dependent on these properties of the object in the insonified focal region of the ultrasound (US) transducer. We demonstrate that Young's modulus (E) can be recovered from the resonance observed in M versus omega (the US frequency) plots and optical absorption (mu(a)) and scattering (mu(s)) coefficients from the measured differential phase changes. All experimental observations are verified also using Monte Carlo simulations. (c) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). DOI: 10.1117/1.JBO.17.10.101507]
Resumo:
Traditional image reconstruction methods in rapid dynamic diffuse optical tomography employ l(2)-norm-based regularization, which is known to remove the high-frequency components in the reconstructed images and make them appear smooth. The contrast recovery in these type of methods is typically dependent on the iterative nature of method employed, where the nonlinear iterative technique is known to perform better in comparison to linear techniques (noniterative) with a caveat that nonlinear techniques are computationally complex. Assuming that there is a linear dependency of solution between successive frames resulted in a linear inverse problem. This new framework with the combination of l(1)-norm based regularization can provide better robustness to noise and provide better contrast recovery compared to conventional l(2)-based techniques. Moreover, it is shown that the proposed l(1)-based technique is computationally efficient compared to its counterpart (l(2)-based one). The proposed framework requires a reasonably close estimate of the actual solution for the initial frame, and any suboptimal estimate leads to erroneous reconstruction results for the subsequent frames.
Resumo:
CAELinux is a Linux distribution which is bundled with free software packages related to Computer Aided Engineering (CAE). The free software packages include software that can build a three dimensional solid model, programs that can mesh a geometry, software for carrying out Finite Element Analysis (FEA), programs that can carry out image processing etc. Present work has two goals: 1) To give a brief description of CAELinux 2) To demonstrate that CAELinux could be useful for Computer Aided Engineering, using an example of the three dimensional reconstruction of a pig liver from a stack of CT-scan images. One can note that instead of using CAELinux, using commercial software for reconstructing the liver would cost a lot of money. One can also note that CAELinux is a free and open source operating system and all software packages that are included in the operating system are also free. Hence one can conclude that CAELinux could be a very useful tool in application areas like surgical simulation which require three dimensional reconstructions of biological organs. Also, one can see that CAELinux could be a very useful tool for Computer Aided Engineering, in general.
Resumo:
We propose an iterative data reconstruction technique specifically designed for multi-dimensional multi-color fluorescence imaging. Markov random field is employed (for modeling the multi-color image field) in conjunction with the classical maximum likelihood method. It is noted that, ill-posed nature of the inverse problem associated with multi-color fluorescence imaging forces iterative data reconstruction. Reconstruction of three-dimensional (3D) two-color images (obtained from nanobeads and cultured cell samples) show significant reduction in the background noise (improved signal-to-noise ratio) with an impressive overall improvement in the spatial resolution (approximate to 250 nm) of the imaging system. Proposed data reconstruction technique may find immediate application in 3D in vivo and in vitro multi-color fluorescence imaging of biological specimens. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4769058]
Resumo:
The classical approach to A/D conversion has been uniform sampling and we get perfect reconstruction for bandlimited signals by satisfying the Nyquist Sampling Theorem. We propose a non-uniform sampling scheme based on level crossing (LC) time information. We show stable reconstruction of bandpass signals with correct scale factor and hence a unique reconstruction from only the non-uniform time information. For reconstruction from the level crossings we make use of the sparse reconstruction based optimization by constraining the bandpass signal to be sparse in its frequency content. While overdetermined system of equations is resorted to in the literature we use an undetermined approach along with sparse reconstruction formulation. We could get a reconstruction SNR > 20dB and perfect support recovery with probability close to 1, in noise-less case and with lower probability in the noisy case. Random picking of LC from different levels over the same limited signal duration and for the same length of information, is seen to be advantageous for reconstruction.