977 resultados para Química inorgánica-Manuales de laboratorio


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With global warming becoming one of the main problems our society is facing nowadays, there is an urgent demand to develop materials suitable for CO2 storage as well as for gas separation. Within this context, hierarchical porous structures are of great interest for in-flow applications because of the desirable combination of an extensive internal reactive surface along narrow nanopores with facile molecular transport through broad “highways” leading to and from these pores. Deep eutectic solvents (DESs) have been recently used in the synthesis of carbon monoliths exhibiting a bicontinuous porous structure composed of continuous macroporous channels and a continuous carbon network that contains a certain microporosity and provides considerable surface area. In this work, we have prepared two DESs for the preparation of two hierarchical carbon monoliths with different compositions (e.g., either nitrogen-doped or not) and structure. It is worth noting that DESs played a capital role in the synthesis of hierarchical carbon monoliths not only promoting the spinodal decomposition that governs the formation of the bicontinuous porous structure but also providing the precursors required to tailor the composition and the molecular sieve structure of the resulting carbons. We have studied the performance of these two carbons for CO2, N2, and CH4 adsorption in both monolithic and powdered form. We have also studied the selective adsorption of CO2 versus CH4 in equilibrium and dynamic conditions. We found that these materials combined a high CO2-sorption capacity besides an excellent CO2/N2 and CO2/CH4 selectivity and, interestingly, this performance was preserved when processed in both monolithic and powdered form.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Las grandes emisiones de CO2 procedentes de la combustión de combustibles fósiles están provocando un calentamiento global en nuestro planeta. Estos problemas medioambientales están obligando a los diferentes gobiernos a buscar soluciones que permitan reducir esas emisiones y mitigar sus efectos adversos. Una de las soluciones más prometedoras consiste en la captura selectiva de CO2 en efluentes industriales mediante el uso de materiales adsorbentes porosos (zeolitas, carbón activado y materiales híbridos MOFs) que combinen una elevada capacidad de adsorción y una adecuada selectividad a CO2 frente al resto de gases del proceso industrial, además de una adecuada regeneración.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herein, the preferential oxidation of CO in excess hydrogen (PROX reaction) was studied over Au catalysts supported on ceria and Y or Nb doped ceria. Both supports and catalysts have been extensively characterized by a number of advanced techniques; XRD, N2-adsortion, Raman spectroscopy, XPS, and H2-TPR. The catalytic results showed that when an ideal mixture of H2 and CO is used for the PROX reaction the gold supported on pure ceria behaves better than the others samples. However, when a typical reformate gas composition containing CO2 and H2O is used, the gold supported on Nb doped sample behaves better than gold supported in pure ceria. It is suggested that niobium hampers the strong adsorption of CO2 and H2O in the active sites, thus improving the catalytic performance in real reformate gas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of treatment of an activated carbon with Sulphur precursors on its textural properties and on the ability of the complex synthesized for mercury removal in aqueous solutions are studied. To this end, a commercial activated carbon has been modified by treatments with aqueous solutions of Na2S and H2SO4 at two temperatures (25 and 140 °C) to introduce sulphur species on its surface. The prepared adsorbents have been characterized by N2 (-196 °C) and CO2 (0 °C) adsorption, thermogravimetric analysis, temperature-programmed decomposition and X-ray photoelectron spectroscopy, and their adsorption capacities to remove Hg(II) ions in aqueous solutions have been determined. It has been shown that the impregnation treatments slightly modified the textural properties of the samples, with a small increase in the textural parameters (BET surface area and mesopore volumes). By contrast, surface oxygen content was increased when impregnation was carried out with Na2S, but it decreased when H2SO4 was used. However, the main effect of the impregnation treatments was the formation of surface sulphur complexes of thiol type, which was only achieved when the impregnation treatments were carried out at low temperature (25 °C). The presence of surface sulphur enhances the adsorption behaviour of these samples in the removal of Hg(II) cations in aqueous solutions at pH 2. In fact, complete Hg(II) removal is only obtained with the sulphur-containing activated carbons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hierarchical porous carbon materials prepared by the direct carbonization of lignin/zeolite mixtures and the subsequent basic etching of the inorganic template have been electrochemically characterized in acidic media. These lignin-based templated carbons have interesting surface chemistry features, such as a variety of surface oxygen groups and also pyridone and pyridinic groups, which results in a high capacitance enhancement compared to petroleum-pitch-based carbons obtained by the same procedure. Furthermore, they are easily electro-oxidized in a sulfuric acid electrolyte under positive polarization to produce a large amount of surface oxygen groups that boosts the pseudocapacitance. The lignin-based templated carbons showed a specific capacitance as high as 250 F g−1 at 50 mA g−1, with a capacitance retention of 50 % and volumetric capacitance of 75 F cm−3 at current densities higher than 20 A g−1 thanks to their suitable porous texture. These results indicate the potential use of inexpensive biomass byproducts, such as lignin, as carbon precursors in the production of hierarchical carbon materials for electrodes in electrochemical capacitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel hierarchical SiO2 monolithic microreactors loaded with either Pd or Pt nanoparticles have been prepared in fused silica capillaries and tested in the Preferential Oxidation of CO (PrOx) reaction. Pd and Pt nanoparticles were prepared by the reduction by solvent method and the support used was a mesoporous SiO2 monolith prepared by a well-established sol–gel methodology. Comparison of the activity with an equivalent powder catalyst indicated that the microreactors show an enhanced catalytic behavior (both in terms of CO conversion and selectivity) due to the superior mass and heat transfer processes that take place inside the microchannel. TOF values at low CO conversions have been found to be ∼2.5 times higher in the microreactors than in the powder catalyst and the residence time seems to have a noticeable influence over the selectivity of the catalysts designed for this reaction. The Pd and Pt flexible microreactors developed in this work have proven to be effective for the CO oxidation reaction both in the presence and absence of H2, standing out as a very interesting and suitable option for the development of CO purification systems of small dimensions for portable and on-board applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogen functionalization of a highly microporous activated carbon (BET surface area higher than 3000 m2/g) has been achieved using the following sequence of treatments: (i) chemical oxidation using concentrated nitric acid, (ii) amidation by acyl chloride substitution with NH4NO3 and (iii) amination by Hoffman rearrangement. This reaction pathway yielded amide and amine functional groups, and a total nitrogen content higher than 3 at.%. It is achieved producing only a small decrease (20%) of the starting microporosity, being most of it related to the initial wet oxidation of the activated carbon. Remarkably, nitrogen aromatic rings were also formed as a consequence of secondary cyclation reactions. The controlled step-by-step modification of the surface chemistry allowed to assess the influence of individual nitrogen surface groups in the electrochemical performance in 1 M H2SO4 of the carbon materials. The largest gravimetric capacitance was registered for the pristine activated carbon due to its largest apparent surface area. The nitrogen-containing activated carbons showed the highest surface capacitances. Interestingly, the amidated activated carbon showed the superior capacitance retention due to the presence of functional groups (such as lactams, imides and pyrroles) that enhance electrical conductivity through their electron-donating properties, showing a capacitance of 83 F/g at 50 A/g.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two petroleum residues were pyrolyzed under two different conditions to obtain pitches with low or high mesophase content. The effect of the KOH: precursor ratio and the activation temperature on the packing density and porous texture of the carbons have been studied and optimized. Activated carbons combining high micropore volume (>1 cm3/g) and high packing density (0.7 g/cm3) have been successfully prepared. Regarding excess methane adsorption capacities, the best results (160 cm3 (STP)/cm3 at 25 °C and 3.5 MPa) were obtained using the pitch with the higher content of the more organized mesophase, activated at relatively low temperature (700 °C), with a medium KOH: precursor ratio (3:1). Some of the activated carbons exhibit enhanced adsorption capacity at high pressure, giving values as high as 175 cm3 (STP)/cm3 at 25 °C and 5 MPa and 200 cm3 (STP)/cm3 at 25 °C and 10 MPa (the same amount as in an empty cylinder but at half of the pressure), indicating a contribution of large micropores and narrow mesopores to adsorption at high pressure. The density of methane in pores between 1 and 2.5 nm at pressure up to 10 MPa was estimated to understand their contribution to the total adsorption capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La memoria de tesis titulada “Inmovilización de complejos organometálicos en soportes sólidos para aplicación en catálisis” presenta una serie de trabajos encaminados a la obtención de catalizadores híbridos, que sean estables, activos, selectivos y reutilizables en reacciones de hidrogenación e hidroformilación de olefinas. Para ello, se han estudiado diversos métodos para inmovilizar complejos metálicos en materiales carbonosos y sólidos inorgánicos: adsorción física, anclaje por formación de un enlace covalente e intercambio iónico. Estos catalizadores se han usado en las reacciones mencionadas, analizando sus propiedades catalíticas (actividad y selectividad), así como la robustez de los mismos y las posibilidades de reutilización.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Porous adsorbents are currently investigated for hydrogen storage application. From a practical point of view, in addition to high porosity developments, high material densities are required, in order to confine as much material as possible in a tank device. In this study, we use different measured sample densities (tap, packing, compacted and monolith) for analyzing the hydrogen adsorption behavior of activated carbon fibres (ACFs) and activated carbon nanofibres (ACNFs) which were prepared by KOH and CO2 activations, respectively. Hydrogen adsorption isotherms are measured for all of the adsorbents at room temperature and under high pressures (up to 20 MPa). The obtained results confirm that (i) gravimetric H2 adsorption is directly related to the porosity of the adsorbent, (ii) volumetric H2 adsorption depends on the adsorbent porosity and importantly also on the material density, (iii) the density of the adsorbent can be improved by packing the original adsorbents under mechanical pressure or synthesizing monoliths from them, (iv) both ways (packing under pressure or preparing monoliths) considerably improve the storage capacity of the starting adsorbents, and (v) the preparation of monoliths, in addition to avoid engineering constrains of packing under mechanical pressure, has the advantage of providing high mechanical resistance and easy handling of the adsorbent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of metal loading and support surface functional groups (SFG) on methane dry reforming (MDR) over Ni catalysts supported on pine-sawdust derived activated carbon were studied. Using pine sawdust as the catalyst support precursor, the smallest variety and lowest concentration of SFG led to best Ni dispersion and highest catalytic activity, which increased with Ni loading up to 3 Ni atoms nm-2. At higher Ni loading, the formation of large metal aggregates was observed, consistent with a lower "apparen" surface area and a decrease in catalytic activity. The H2/CO ratio rose with increasing reaction temperature, indicating that increasingly important side reactions were taking place in addition to MDR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Palladium and bimetallic Pd–Ni nanoparticles (NPs) protected by polyvinylpyrrolidone were prepared by the reduction-by-solvent method and deposited on multiwalled carbon nanotubes (MWCNTs). The catalytic activity of these NPs to carbon–carbon bond-forming reactions was studied by using 0.1 mol % Pd loading, at 120 °C for 1 h and water as a solvent under ligand-free conditions. The Suzuki–Miyaura reaction took place quantitatively for the cross-coupling of 4-bromoanisole with phenylboronic acid, better than those obtained with potassium phenyltrifluoroborate, with Pd50Ni50/MWCNTs as a catalyst and K2CO3 as a base and TBAB as an additive, with good recyclability during 4 cycles with some Ni leaching. The Hiyama reaction of 4-iodoanisole with trimethoxyphenylsilane, under fluoride-free conditions using 50 % aqueous NaOH solution, was performed with Pd/MWCNTs as a catalyst in 83 % yield with low recyclability. For the Mizoroki-Heck reaction 4-iodoanisole and styrene gave the corresponding 4-methoxystilbene quantitatively with Pd50Ni50/MWCNTs using K2CO3 as a base and TBAB as an additive although the recycle failed. In the case of the Sonogashira-Hagihara reaction, Pd/MWCNTs had to be used as a catalyst and pyrrolidine as a base for the coupling of 4-iodoanisole with phenylacetylene under copper-free conditions. The corresponding 4-methoxytolane was quantitatively obtained allowing the recycling of the catalyst during 3 cycles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activated carbons were prepared by chemical activation of hydrochars, obtained by hydrothermal carbonisation (HTC) using low cost and abundant precursors such as rye straw and cellulose, with KOH. Hydrochars derived from rye straw were chemically activated using different KOH/precursor ratios, in order to assess the effect of this parameter on their electrochemical behaviour. In the case of cellulose, the influence of the hydrothermal carbonisation temperature was studied by fixing the activating agent/cellulose ratio. Furthermore, N-doped activated carbons were synthesised by KOH activation of hydrochars prepared by HTC from a mixture of glucose with melamine or glucosamine. In this way, N-doped activated carbons were prepared in order to evaluate the influence of nitrogen groups on their electrochemical behaviour in acidic medium. The results showed that parameters such as chemical activation or carbonisation temperature clearly affect the capacitance, since these parameters play a key role in the textural properties of activated carbons. Finally, symmetric capacitors based on activated carbon and N-doped activated carbon were tested at 1.3 V in a two-electrode cell configuration and the results revealed that N-groups improved the capacitance at high current density.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low temperature water–gas shift (WGS) reaction has been studied over Ni–CeO2/Graphene and Ni/Graphene. The catalysts were prepared with 5 wt.% Ni and 20 wt.% CeO2 loadings, by deposition-precipitation employing sodium hydroxide and urea as precipitating agents. The materials were characterized by TEM, powder X-ray diffraction, Raman spectroscopy, H2-temperature-programmed reduction and X-ray photoelectron spectroscopy (XPS). The characterization and the reaction results indicated that the interaction between the active species and the support is higher than with activated carbon, and this hinders the reducibility of ceria and thus the catalytic performance. On the other hand, the presence of residual sodium in samples prepared by precipitation with NaOH facilitated the reduction of ceria. The catalytic activity was highly improved in the presence of sodium, what can be explained on the basis of an associative reaction mechanism which is favored over Ni-O-Na entities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electro-oxidation of carbon materials enormously degrades their performance and limits their wider utilization in multiple electrochemical applications. In this work, the positive influence of phosphorus functionalities on the overall electrochemical stability of carbon materials has been demonstrated under different conditions. We show that the extent and selectivity of electroxidation in P-containing carbons are completely different to those observed in conventional carbons without P. The electro-oxidation of P-containing carbons involves the active participation of phosphorus surface groups, which are gradually transformed at high potentials from less-to more-oxidized species to slow down the introduction of oxygen groups on the carbon surface (oxidation) and the subsequent generation of (C*OOH)-like unstable promoters of electro-gasification. The highest-oxidized P groups (–C–O–P-like species) seem to distribute the gained oxygen to neighboring carbon sites, which finally suffer oxidation and/or gasification. So it is thought that P-groups could act as mediators of carbon oxidation although including various steps and intermediates compared to electroxidation in P-free materials.