955 resultados para QUANTITATIVE TRAIT LOCI


Relevância:

80.00% 80.00%

Publicador:

Resumo:

DNA methylation patterns at the IGF2-H19 locus were investigated in sperm DNA from Swiss Landrace (SL) and Swiss Large White (LW) boars. The putative IGF2 differentially methylated regions (DMR) 0, 1 and 2, a quantitative trait nucleotide (QTN) region in the intron 3 and a CpG island in the intron 4 of the IGF2 gene as well as three regions around porcine CTCF binding sites within the H19 differentially methylated domain (DMD) were selected for the DNA methylation analysis. In both breeds putative IGF2 DMR0, 1, 2 and H19 DMD were hypermethylated. Significant differences in DNA methylation content were found between the two breeds in the two DMD regions proximal to the H19 gene. The IGF2 QTN region and the CpG island in the IGF2 intron 4 were hypomethylated in sperm DNA of both breeds. The methylation analysis revealed significantly more methylated CpG sites in the intron 4 of sperm from the LW breed than in that from SL. No difference was found in global DNA methylation between the two breeds. These results indicate differences in DNA methylation patterns between breeds and it remains to be established whether variation in DNA methylation patterns impacts on phenotypic traits.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This review deals with the complex sex determining system of Nile tilapia, Oreochromis niloticus, governed by the interactions between a genetic determination and the influence of temperature, shown in both domestic and wild populations. Naturally sex reversed individuals are strongly suggested in two wild populations. This can be due to the masculinising temperatures which some fry encounter during their sex differentiation period when they colonise shallow waters, and/or to the influence of minor genetic factors. Differences regarding a) thermal responsiveness of sex ratios between and within Nile tilapia populations, b) maternal and paternal effects on temperature dependent sex ratios and c) nearly identical results in offspring of repeated matings, demonstrate that thermosensitivity is under genetic control. Selection experiments to increase the thermosensitivity revealed high responses in the high and low sensitive lines. The high-line showed ~ 90% males after 2 generations of selection whereas the weakly sensitive line had 54% males. This is the first evidence that a surplus of males in temperature treated groups can be selected as a quantitative trait. Expression profiles of several genes (Cyp19a, Foxl2, Amh, Sox9a,b) from the gonad and brain were analysed to define temperature action on the sex determining/differentiating cascade in tilapia. The coexistence of GSD and TSD is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the evolution of higher levels of dominance as a response to negative frequency-dependent selection. In contrast to previous studies, we focus on the effect of assortative mating on the evolution of dominance under frequency-dependent intraspecific competition. We analyze a two-locus two-allele model, in which the primary locus has a major effect on a quantitative trait that is under a mixture of frequency-independent stabilizing selection, density-dependent selection, and frequency-dependent selection caused by intraspecific competition for a continuum of resources. The second (modifier) locus determines the degree of dominance at the trait level. Additionally, the population mates assortatively with respect to similarities in the ecological trait. Our analysis shows that the parameter region in which dominance can be established decreases if small levels of assortment are introduced. In addition, the degree of dominance that can be established also decreases. In contrast, if assortment is intermediate, sexual selection for extreme types can be established, which leads to evolution of higher levels of dominance than under random mating. For modifiers with large effects, intermediate levels of assortative mating are most favorable for the evolution of dominance. For large modifiers, the speed of fixation can even be higher for intermediate levels of assortative mating than for random mating.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The maintenance of genetic variation in a spatially heterogeneous environment has been one of the main research themes in theoretical population genetics. Despite considerable progress in understanding the consequences of spatially structured environments on genetic variation, many problems remain unsolved. One of them concerns the relationship between the number of demes, the degree of dominance, and the maximum number of alleles that can be maintained by selection in a subdivided population. In this work, we study the potential of maintaining genetic variation in a two-deme model with deme-independent degree of intermediate dominance, which includes absence of G x E interaction as a special case. We present a thorough numerical analysis of a two-deme three-allele model, which allows us to identify dominance and selection patterns that harbor the potential for stable triallelic equilibria. The information gained by this approach is then used to construct an example in which existence and asymptotic stability of a fully polymorphic equilibrium can be proved analytically. Noteworthy, in this example the parameter range in which three alleles can coexist is maximized for intermediate migration rates. Our results can be interpreted in a specialist-generalist context and (among others) show when two specialists can coexist with a generalist in two demes if the degree of dominance is deme independent and intermediate. The dominance relation between the generalist allele and the specialist alleles play a decisive role. We also discuss linear selection on a quantitative trait and show that G x E interaction is not necessary for the maintenance of more than two alleles in two demes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite the evidence for a genetic predisposition to develop equine sarcoids (ES), no whole genome scan for ES has been performed to date. The objective of this explorative study was to identify chromosome regions associated with ES. The studied population was comprised of two half-sibling sire families, involving a total of 222 horses. Twenty-six of these horses were affected with ES. All horses had been previously genotyped with 315 microsatellite markers. Quantitative trait locus (QTL) signals were suggested where the F statistic exceeded chromosome-wide significance at P < 0.05. The QTL analyses revealed significant signals reaching P < 0.05 on equine chromosome (ECA) 20, 23 and 25, suggesting a polygenic character for this trait. The candidate regions identified on ECA 20, 23 and 25 include genes regulating virus replication and host immune response. Further investigation of the chromosome regions associated with ES and of genes potentially responsible for the development of ES could form the basis for early identification of susceptible animals, breeding selection or the development of new therapeutic targets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plants differ greatly in their susceptibility to insect herbivory, suggesting both local adaptation and resistance tradeoffs. We used maize (Zea mays) recombinant inbred lines to map a quantitative trait locus (QTL) for the maize leaf aphid (Rhopalosiphum maidis) susceptibility to maize Chromosome 1. Phytochemical analysis revealed that the same locus was also associated with high levels of 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside (HDMBOA-Glc) and low levels of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside (DIMBOA-Glc). In vitro enzyme assays with candidate genes from the region of the QTL identified three O-methyltransferases (Bx10a-c) that convert DIMBOA-Glc to HDMBOA-Glc. Variation in HDMBOA-Glc production was attributed to a natural CACTA family transposon insertion that inactivates Bx10c in maize lines with low HDMBOA-Glc accumulation. When tested with a population of 26 diverse maize inbred lines, R. maidis produced more progeny on those with high HDMBOA-Glc and low DIMBOA-Glc. Although HDMBOA-Glc was more toxic to R. maidis than DIMBOA-Glc in vitro, BX10c activity and the resulting decline of DIMBOA-Glc upon methylation to HDMBOA-Glc were associated with reduced callose deposition as an aphid defense response in vivo. Thus, a natural transposon insertion appears to mediate an ecologically relevant trade-off between the direct toxicity and defense-inducing properties of maize benzoxazinoids.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With hundreds of single nucleotide polymorphisms (SNPs) in a candidate gene and millions of SNPs across the genome, selecting an informative subset of SNPs to maximize the ability to detect genotype-phenotype association is of great interest and importance. In addition, with a large number of SNPs, analytic methods are needed that allow investigators to control the false positive rate resulting from large numbers of SNP genotype-phenotype analyses. This dissertation uses simulated data to explore methods for selecting SNPs for genotype-phenotype association studies. I examined the pattern of linkage disequilibrium (LD) across a candidate gene region and used this pattern to aid in localizing a disease-influencing mutation. The results indicate that the r2 measure of linkage disequilibrium is preferred over the common D′ measure for use in genotype-phenotype association studies. Using step-wise linear regression, the best predictor of the quantitative trait was not usually the single functional mutation. Rather it was a SNP that was in high linkage disequilibrium with the functional mutation. Next, I compared three strategies for selecting SNPs for application to phenotype association studies: based on measures of linkage disequilibrium, based on a measure of haplotype diversity, and random selection. The results demonstrate that SNPs selected based on maximum haplotype diversity are more informative and yield higher power than randomly selected SNPs or SNPs selected based on low pair-wise LD. The data also indicate that for genes with small contribution to the phenotype, it is more prudent for investigators to increase their sample size than to continuously increase the number of SNPs in order to improve statistical power. When typing large numbers of SNPs, researchers are faced with the challenge of utilizing an appropriate statistical method that controls the type I error rate while maintaining adequate power. We show that an empirical genotype based multi-locus global test that uses permutation testing to investigate the null distribution of the maximum test statistic maintains a desired overall type I error rate while not overly sacrificing statistical power. The results also show that when the penetrance model is simple the multi-locus global test does as well or better than the haplotype analysis. However, for more complex models, haplotype analyses offer advantages. The results of this dissertation will be of utility to human geneticists designing large-scale multi-locus genotype-phenotype association studies. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Infectious Bovine Keratoconjunctivitis (IBK), known as pinkeye, is a common infectious disease affecting the eyes of cattle. It is characterized by excessive tearing, inflammation of the conjunctiva, and ulceration of the cornea. Although pinkeye is non-fatal, it has a marked economic impact on the cattle industry, due to the decreased performance of infected individuals. Genetic effects on the susceptibility of IBK have been studied and Hereford, Jersey, and Holstein breeds were found to be more susceptible to IBK than Bos Indicus breeds. The objectives of our study were: 1) to estimate genetic parameters of IBK scored in different categories by using genomic threshold model, and 2) to detect markers in linkage disequilibrium with quantitative tract loci (QTL) associated with IBK.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With each cellular generation, oxygenic photoautotrophs must accumulate abundant protein complexes that mediate light capture, photosynthetic electron transport and carbon fixation. In addition to this net synthesis, oxygenic photoautotrophs must counter the light-dependent photoinactivation of Photosystem II (PSII), using metabolically expensive proteolysis, disassembly, resynthesis and re-assembly of protein subunits. We used growth rates, elemental analyses and protein quantitations to estimate the nitrogen (N) metabolism costs to both accumulate the photosynthetic system and to maintain PSII function in the diatom Thalassiosira pseudonana, growing at two pCO2 levels across a range of light levels. The photosynthetic system contains c. 15-25% of total cellular N. Under low growth light, N (re)cycling through PSII repair is only c. 1% of the cellular N assimilation rate. As growth light increases to inhibitory levels, N metabolite cycling through PSII repair increases to c. 14% of the cellular N assimilation rate. Cells growing under the assumed future 750 ppmv pCO2 show higher growth rates under optimal light, coinciding with a lowered N metabolic cost to maintain photosynthesis, but then suffer greater photoinhibition of growth under excess light, coincident with rising costs to maintain photosynthesis. We predict this quantitative trait response to light will vary across taxa.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Darwin theory of evolution by natural selection is based on three principles: (a) variation; (b) inheritance; and (c) natural selection. Here, I take these principles as an excuse to review some topics related to the future research prospects in Animal Breeding. With respect to the first principle I describe two forms of variation different from mutation that are becoming increasingly important: variation in copy number and microRNAs. With respect to the second principle I comment on the possible relevance of non-mendelian inheritance, the so-called epigenetic effects, of which the genomic imprinting is the best characterized in domestic species. Regarding selection principle I emphasize the importance of selection for social traits and how this could contribute to both productivity and animal welfare. Finally, I analyse the impact of molecular biology in Animal Breeding, the achievements and limitations of quantitative trait locus and classical marker-assisted selection and the future of genomic selection

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Behaviors, morphologies, and genetic loci directly involved in reproduction have been increasingly shown to be polymorphic within populations. Explaining how such variants are maintained by selection is crucial to understanding the genetic basis of fertility differences, but direct tests of how alleles at reproductive loci affect fertility are rare. In the sea urchin genus Echinometra, the protein bindin mediates sperm attachment to eggs, evolves quickly, and is polymorphic within species. Eggs exposed to experimental sperm mixtures show strong discrimination on the basis of the males’ bindin genotype. Different females produce eggs that nonrandomly select sperm from different males, showing that variable egg–sperm interactions determine fertility. Eggs select sperm with a bindin genotype similar to their own, suggesting strong linkage between female choice and male trait loci. These experiments demonstrate that alleles at a single locus can have a strong effect on fertilization and that reproductive loci may retain functional polymorphisms through epistatic interactions between male and female traits. They also suggest that positive selection at gamete recognition loci like bindin involves strong selection within species on mate choice interactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Asthma is a complex heritable inflammatory disorder of the airways associated with clinical signs of atopy and bronchial hyperresponsiveness. Recent studies localized a major gene for asthma to chromosome 5q31-q33 in humans. Thus, this segment of the genome represents a candidate region for genes that determine susceptibility to bronchial hyperresponsiveness and atopy in animal models. Homologs of candidate genes on human chromosome 5q31-q33 are found in four regions in the mouse genome, two on chromosome 18, and one each on chromosomes 11 and 13. We assessed bronchial responsiveness as a quantitative trait in mice and found it linked to chromosome 13. Interleukin 9 (IL-9) is located in the linked region and was analyzed as a gene candidate. The expression of IL-9 was markedly reduced in bronchial hyporesponsive mice, and the level of expression was determined by sequences within the qualitative trait locus (QTL). These data suggest a role for IL-9 in the complex pathogenesis of bronchial hyperresponsiveness as a risk factor for asthma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although adaptive evolution is thought to depend primarily on mutations of small effect, major gene effects may underlie many of the important differences observed among species in nature. The Mexican axolotl (Ambystoma mexicanum) has a derived mode of development that is characterized by metamorphic failure (paedomorphosis), an adaptation for an entirely aquatic life cycle. By using an interspecific crossing design and genetic linkage analysis, a major quantitative trait locus for expression of metamorphosis was identified in a local map of amplified fragment length polymorphisms. These data are consistent with a major gene hypothesis for the evolution of paedomorphosis in A. mexicanum.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The major murine systemic lupus erythematosus (SLE) susceptibility locus Sle1 is syntenic to a chromosomal region linked with SLE susceptibility in multiple human studies. Congenic analyses have shown that Sle1 breaks tolerance to chromatin, a necessary step for full disease induction that can be suppressed by specific modifier loci. In the present study, our fine mapping analysis of the location of Sle1 has determined that three loci within this congenic interval, termed Sle1a, Sle1b, and Sle1c, can independently cause a loss of tolerance to chromatin. Each displays a distinctive profile of serological and cellular characteristics, with T and B cell functions being more affected by Sle1a and Sle1b, respectively. The epistatic interactions of Sle1 with other susceptibility loci to cause severe nephritis cannot be accounted, however, by these three loci alone, suggesting the existence of an additional locus, termed Sle1d. These findings indicate that the potent autoimmune phenotype caused by the Sle1 genomic interval reflects the combined impact of four, separate, susceptibility genes. This level of genetic complexity, combined with similar findings in other systems, supports the possibility that many complex trait loci reflect the impact of polymorphisms in linked clusters of genes with related functions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Organisms producing resting stages provide unique opportunities for reconstructing the genetic history of natural populations. Diapausing seeds and eggs often are preserved in large numbers, representing entire populations captured in an evolutionary inert state for decades and even centuries. Starting from a natural resting egg bank of the waterflea Daphnia, we compare the evolutionary rates of change in an adaptive quantitative trait with those in selectively neutral DNA markers, thus effectively testing whether the observed genetic changes in the quantitative trait are driven by natural selection. The population studied experienced variable and well documented levels of fish predation over the past 30 years and shows correlated genetic changes in phototactic behavior, a predator-avoidance trait that is related to diel vertical migration. The changes mainly involve an increased plasticity response upon exposure to predator kairomone, the direction of the changes being in agreement with the hypothesis of adaptive evolution. Genetic differentiation through time was an order of magnitude higher for the studied behavioral trait than for neutral markers (DNA microsatellites), providing strong evidence that natural selection was the driving force behind the observed, rapid, evolutionary changes.