978 resultados para Public goods supply


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Human population growth and increased industrial activity in recent decades have contributed to a range of environmental problems, including the contamination of groundwater and surface water. In order to help in the management of these resources, water quality indices are used as tools to summarize multiple parameters and express them in the form of a single number. The ability to provide both an integrated assessment of changes in environmental variables, as well as performance tracking, has resulted in such indices being increasingly employed in surface water monitoring programs. The aim of this study was to develop an Index for Public Supply Water Quality (IPS) using a fuzzy inference methodology. Linguistic systems generally provide satisfactory tools for qualitative purposes, enabling the inclusion of descriptive variables with reduced loss of individual information. Validation of the technique was achieved by analysis of measurement data obtained for the Sorocaba River, provided by CETESB. The new procedure proved more rigorous, compared to classical IPS. It could be readily applied in the evaluation of other water bodies, or be adjusted to incorporate additional parameters also considered important for the assessment of water quality.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In 2001, the U.S. Geological Survey, as part of the National Water Quality Assessment (NAWQA) Program, initiated a topical study of Transport of Anthropogenic and Natural Contaminants (TANC) to PSW (public-supply wells). Local-scale and regional-scale TANC study areas were delineated within selected NAWQA study units for intensive study of processes effecting transport of contaminants to PSWs. This report describes results from a local-scale TANC study area at York, Nebraska, within the High Plains aquifer, including the hydrogeology and geochemistry of a 108-square-kilometer study area that contains the zone of contribution to a PSW selected for study (study PSW), and describes factors controlling the transport of selected anthropogenic and natural contaminants to PSWs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The U.S. Geological Survey (USGS) is committed to providing the Nation with credible scientific information that helps to enhance and protect the overall quality of life and that facilitates effective management of water, biological, energy, and mineral resources (http://www.usgs.gov/). Information on the Nation’s water resources is critical to ensuring long-term availability of water that is safe for drinking and recreation and is suitable for industry, irrigation, and fish and wildlife. Population growth and increasing demands for water make the availability of that water, now measured in terms of quantity and quality, even more essential to the long-term sustainability of our communities and ecosystems. The USGS implemented the National Water-Quality Assessment (NAWQA) Program in 1991 to support national, regional, State, and local information needs and decisions related to water-quality management and policy (http://water.usgs.gov/nawqa). The NAWQA Program is designed to answer: What is the condition of our Nation’s streams and ground water? How are conditions changing over time? How do natural features and human activities affect the quality of streams and ground water, and where are those effects most pronounced? By combining information on water chemistry, physical characteristics, stream habitat, and aquatic life, the NAWQA Program aims to provide science-based insights for current and emerging water issues and priorities. From 1991-2001, the NAWQA Program completed interdisciplinary assessments and established a baseline understanding of water-quality conditions in 51 of the Nation’s river basins and aquifers, referred to as Study Units (http://water.usgs.gov/nawqa/studyu.html).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Groundwater age is a key aspect of production well vulnerability. Public drinking water supply wells typically have long screens and are expected to produce a mixture of groundwater ages. The groundwater age distributions of seven production wells of the Holten well field (Netherlands) were estimated from tritium-helium (3H/3He), krypton-85 (85Kr), and argon-39 (39Ar), using a new application of a discrete age distribution model and existing mathematical models, by minimizing the uncertainty-weighted squared differences of modeled and measured tracer concentrations. The observed tracer concentrations fitted well to a 4-bin discrete age distribution model or a dispersion model with a fraction of old groundwater. Our results show that more than 75 of the water pumped by four shallow production wells has a groundwater age of less than 20 years and these wells are very vulnerable to recent surface contamination. More than 50 of the water pumped by three deep production wells is older than 60 years. 3H/3He samples from short screened monitoring wells surrounding the well field constrained the age stratification in the aquifer. The discrepancy between the age stratification with depth and the groundwater age distribution of the production wells showed that the well field preferentially pumps from the shallow part of the aquifer. The discrete groundwater age distribution model appears to be a suitable approach in settings where the shape of the age distribution cannot be assumed to follow a simple mathematical model, such as a production well field where wells compete for capture area.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Twenty-five public supply wells throughout the hydrogeologically diverse region of Scania, southern Sweden are subjected to environmental tracer analysis (³H–³He,⁴He, CFCs, SF₆ and for one well only also ⁸⁵Kr and ³⁹Ar) to study well and aquifer vulnerability and evaluate possibilities of groundwater age distribution assessment. We find CFC and SF₆ concentrations well above solubility equilibrium with modern atmosphere, indicating local contamination, as well as indications of CFC degradation. The tracer-specific complications considerably constrain possibilities for sound quantitative regional ground- water age distribution assessment and demonstrate the importance of initial qualitative assessment of tracer-specific reliability, as well a need for additional, complementary tracers (e.g. ⁸⁵Kr,³⁹Ar and potentially also ¹⁴C). Lumped parameter modelling yields credible age distribution assessments for representative wells in four type aquifers. Pollution vulnerability of the aquifer types was based on the selected LPM models and qualitative age characterisation. Most vulnerable are unconfined dual porosity and fractured bedrock aquifers, due to a large component of very young groundwater. Unconfined sedimentary aquifers are vulnerable due to young groundwater and a small pre-modern component. Less vulnerable are semi-confined sedimentary or dual-porosity aquifers, due to older age of the modern component and a larger pre-modern component. Confined aquifers appear least vulnerable, due an entirely pre-modern groundwater age distribution (recharged before 1963). Tracer complications aside, environmental tracer analyses and lumped parameter modelling aid in vulnerability assessment and protection of regional groundwater resources.