980 resultados para Proximal Point Algorithm
Resumo:
The main aims of this work are the development and the validation of one generic algorithm to provide the optimal control of small power wind generators. That means up to 40 kW and blades with fixed pitch angle. This algorithm allows the development of controllers to fetch the wind generators at the desired operational point in variable operating conditions. The problems posed by the variable wind intensity are solved using the proposed algorithm. This is done with no explicit measure of the wind velocity, and so no special equipment or anemometer is required to compute or measure the wind velocity.
Resumo:
In recent years the use of several new resources in power systems, such as distributed generation, demand response and more recently electric vehicles, has significantly increased. Power systems aim at lowering operational costs, requiring an adequate energy resources management. In this context, load consumption management plays an important role, being necessary to use optimization strategies to adjust the consumption to the supply profile. These optimization strategies can be integrated in demand response programs. The control of the energy consumption of an intelligent house has the objective of optimizing the load consumption. This paper presents a genetic algorithm approach to manage the consumption of a residential house making use of a SCADA system developed by the authors. Consumption management is done reducing or curtailing loads to keep the power consumption in, or below, a specified energy consumption limit. This limit is determined according to the consumer strategy and taking into account the renewable based micro generation, energy price, supplier solicitations, and consumers’ preferences. The proposed approach is compared with a mixed integer non-linear approach.
Resumo:
To maintain a power system within operation limits, a level ahead planning it is necessary to apply competitive techniques to solve the optimal power flow (OPF). OPF is a non-linear and a large combinatorial problem. The Ant Colony Search (ACS) optimization algorithm is inspired by the organized natural movement of real ants and has been successfully applied to different large combinatorial optimization problems. This paper presents an implementation of Ant Colony optimization to solve the OPF in an economic dispatch context. The proposed methodology has been developed to be used for maintenance and repairing planning with 48 to 24 hours antecipation. The main advantage of this method is its low execution time that allows the use of OPF when a large set of scenarios has to be analyzed. The paper includes a case study using the IEEE 30 bus network. The results are compared with other well-known methodologies presented in the literature.
Resumo:
This paper presents a Unit Commitment model with reactive power compensation that has been solved by Genetic Algorithm (GA) optimization techniques. The GA has been developed a computational tools programmed/coded in MATLAB. The main objective is to find the best generations scheduling whose active power losses are minimal and the reactive power to be compensated, subjected to the power system technical constraints. Those are: full AC power flow equations, active and reactive power generation constraints. All constraints that have been represented in the objective function are weighted with a penalty factors. The IEEE 14-bus system has been used as test case to demonstrate the effectiveness of the proposed algorithm. Results and conclusions are dully drawn.
Resumo:
Electricity market players operating in a liberalized environment requires access to an adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tools must include ancillary market simulation. This paper proposes two different methods (Linear Programming and Genetic Algorithm approaches) for ancillary services dispatch. The methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case concerning the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is included in this paper.
Resumo:
Distributed generation unlike centralized electrical generation aims to generate electrical energy on small scale as near as possible to load centers, interchanging electric power with the network. This work presents a probabilistic methodology conceived to assist the electric system planning engineers in the selection of the distributed generation location, taking into account the hourly load changes or the daily load cycle. The hourly load centers, for each of the different hourly load scenarios, are calculated deterministically. These location points, properly weighted according to their load magnitude, are used to calculate the best fit probability distribution. This distribution is used to determine the maximum likelihood perimeter of the area where each source distributed generation point should preferably be located by the planning engineers. This takes into account, for example, the availability and the cost of the land lots, which are factors of special relevance in urban areas, as well as several obstacles important for the final selection of the candidates of the distributed generation points. The proposed methodology has been applied to a real case, assuming three different bivariate probability distributions: the Gaussian distribution, a bivariate version of Freund’s exponential distribution and the Weibull probability distribution. The methodology algorithm has been programmed in MATLAB. Results are presented and discussed for the application of the methodology to a realistic case and demonstrate the ability of the proposed methodology for efficiently handling the determination of the best location of the distributed generation and their corresponding distribution networks.
Resumo:
Although it is always weak between RFID Tag and Terminal in focus of the security, there are no security skills in RFID Tag. Recently there are a lot of studying in order to protect it, but because it has some physical limitation of RFID, that is it should be low electric power and high speed, it is impossible to protect with the skills. At present, the methods of RFID security are using a security server, a security policy and security. One of them the most famous skill is the security module, then they has an authentication skill and an encryption skill. In this paper, we designed and implemented after modification original SEED into 8 Round and 64 bits for Tag.
Resumo:
Mestrado em Radioterapia.
Resumo:
Mathematical Program with Complementarity Constraints (MPCC) finds applica- tion in many fields. As the complementarity constraints fail the standard Linear In- dependence Constraint Qualification (LICQ) or the Mangasarian-Fromovitz constraint qualification (MFCQ), at any feasible point, the nonlinear programming theory may not be directly applied to MPCC. However, the MPCC can be reformulated as NLP problem and solved by nonlinear programming techniques. One of them, the Inexact Restoration (IR) approach, performs two independent phases in each iteration - the feasibility and the optimality phases. This work presents two versions of an IR algorithm to solve MPCC. In the feasibility phase two strategies were implemented, depending on the constraints features. One gives more importance to the complementarity constraints, while the other considers the priority of equality and inequality constraints neglecting the complementarity ones. The optimality phase uses the same approach for both algorithm versions. The algorithms were implemented in MATLAB and the test problems are from MACMPEC collection.
Resumo:
In this paper a solution to an highly constrained and non-convex economical dispatch (ED) problem with a meta-heuristic technique named Sensing Cloud Optimization (SCO) is presented. The proposed meta-heuristic is based on a cloud of particles whose central point represents the objective function value and the remaining particles act as sensors "to fill" the search space and "guide" the central particle so it moves into the best direction. To demonstrate its performance, a case study with multi-fuel units and valve- point effects is presented.
Resumo:
Industrial rotating machines may be exposed to severe dynamic excitations due to resonant working regimes. Dealing with the bending vibration, problem of a machine rotor, the shaft - and attached discs - can be simply modelled using the Bernoulli-Euler beam theory, as a continuous beam subjected to a specific set of boundary conditions. In this study, the authors recall Rayleigh's method to propose an iterative strategy, which allows for the determination of natural frequencies and mode shapes of continuous beams taking into account the effect of attached concentrated masses and rotational inertias, including different stiffness coefficients at the right and the left end sides. The algorithm starts with the exact solutions from Bernoulli-Euler's beam theory, which are then updated through Rayleigh's quotient parameters. Several loading cases are examined in comparison with the experimental data and examples are presented to illustrate the validity of the model and the accuracy of the obtained values.
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Mestrado em Radioterapia
Resumo:
This paper describes an implementation of a long distance echo canceller, operating on full-duplex with hands-free and in real-time with a single Digital Signal Processor (DSP). The proposed solution is based on short length adaptive filters centered on the positions of the most significant echoes, which are tracked by time delay estimators, for which we use a new approach. To deal with double talking situations a speech detector is employed. The floating-point DSP TMS320C6713 from Texas Instruments is used with software written in C++, with compiler optimizations for fast execution. The resulting algorithm enables long distance echo cancellation with low computational requirements, suited for embbeded systems. It reaches greater echo return loss enhancement and shows faster convergence speed when compared to the conventional approach. The experimental results approach the CCITT G.165 recommendation levels.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)