669 resultados para Propylene epoxidation
Resumo:
The transfer behavior of the heteropoly anion [H3PW11O39]4- and the isopoly anion [H2W12O39]4- across the water/nitrobenzene interface was investigated by cyclic voltammetry and chronopotentiometry with linear current scanning. The transfer processes were
MODIFIED POLYSULFONES .1. SYNTHESIS AND CHARACTERIZATION OF POLYSULFONES WITH UNSATURATED END-GROUPS
Resumo:
Chloro-terminated polysulfones with various molecular weights were modified with poly(ethylene oxide) and poly[(ethylene oxide)(propylene oxide)] macromers carrying alpha-hydroxyl and omega-allyl end groups via classical polycondensation reactions. The pr
Resumo:
Rare earth trifluoroacetates, Ln(CF3CO2)(3) (Ln = thirteen rare earth elements), combined with R(n)AlH(3-n) (R = methyl, octyl, n = 3; R = ethyl, i-Butyl, n = 2, 3) were used as catalysts for the polymerization of tetrahydrofuran (THF). The activity increased by adding propylene oxide (PO), as a promoter, to the polymerization system, producing high molecular weight polytetrahydrofuran (PTHF). The effects of Ln, PO/Ln, and Al/Ln, and others on the polymerization of THF were also studied. (C) 1993 John Wiley & Sons, Inc.
Resumo:
The cylindrical 'D'-size batteries were fabricated by polyaniline paste cathode and lithium foil anode sandwiched with microporous polypropylene separator. The electrolyte used was LiClO4 dissolved in a mixed solvent of propylene carbonate and dimethoxyethane. The results of charge/discharge curves, charge/discharge cycles, the short-circuit current, the open-circuit voltage storage and the change of discharge capacity with temperature, discharge current are reported.
Resumo:
The viscosities of polystyrene-b-poly (ethylene/propylene) diblock copolymer in mixed solvent of n-octane and benzene were measured. The influences of the constitution of the mixed solvent, temperature and concentration were on the viscosity investigated. During the micellization the solution viscosity increases rapidly. The results are consistent with the study on the micellization by light scattering. The average mass of micelleswas measured and the hydrodynamic radius of gyrations were calculated.
Resumo:
This paper describes the roles of silica (SiO2), the butoxy ligand (-OBu) and ethyl benzoate (EB) on ethylene/1-butene copolymerization with MgCl2/SiO2-supported titanium catalysts. The distribution of SiO2 and of the elements Mg and Ti was observed by means of an energy-dispersed X-ray microanalyzer on a scanning electron microscope (SEM). An inversed Si/Mg ratio results, at invariant Ti/Mg ratio and -OBu content, in higher catalyst efficiency and higher comonomer incorporation, with a correspondingly decreased crystallinity of the copolymers. Thus, the inert carrier SiO2 favors copolymerizability, as seen from the values of the reactivity ratios. The copolymer compositional distribution is also affected by the SiO2 content, as seen from the DSC curves of the copolymers. As to the copolymer morphology, addition of SiO2 makes the copolymer particles larger and more uniform.
Resumo:
A wound-type cell with a polyaniline (PAn) positive electrode, a LiClO4-propylene carbonate (PC) electrolyte, and a lithium foil negative electrode has been constructed. The two electrodes are separated by a polypropylene separator. The PAn is deposited on carbon felt from a HClO4 solution containing aniline by galvanostatic or potentiostatic electrolysis. Using cyclic voltammetry charge/discharge cycles and charge/retention tests, the following results have been obtained: (i) reversibility of the charge/discharge reaction of the PAn electrode is very good; (ii) more than 50 charge/discharge cycles at 80% charge/discharge efficiency and 260 W h kg-1 discharge energy density can be achieved at 50 mA between 2 and 4 V; (iii) the open-circuit voltage and the capacity retention of the battery after storage at open-circuit for 60 days are 3.4 V and 33%, respectively.
Resumo:
The feasibility of applying the method of factor analysis to X-ray diffraction diagrams of binary blends of polypropylene and ethylene-propylene-diene terpolymer (PP/EPDM) was examined. The result of mathematical treatment was satisfactory. The number of scattering species and their concentrations in six kinds of PP/EPDM blends were determined. The separation of the spectral peaks of each species in the blends, contributing spectral intensities, was carried out.
Resumo:
The thermodynamics of micellization for polystyrene-b-poly(ethylene/propylene) two-Mock copolymer(SEP) in the mixtures of n-octane and benzene with different proportions have been studied in this paper, The critical micelle concentrations(GMC) of micelle solutions at various temperatures were measured by lost angle laser light scattering photometer(LALLS), The results shove that the micellization process of nonpolar copolymer SEP in hydrocarbon solvents ire exothermal, and the entropy change is negative, In contrast, far ordinary surfactants in water, it is the enthalpy contribution to the energy change which is responsible for micellization.
Resumo:
With the purpose of finding an ideal cryoprotectant or combination of cryoprotectants in a suitable concentration for flounder (Paralichthys olivaceus) embryo cryopreservation, we tested the toxicities, at culture temperature (16 degrees C), of five most commonly used cryoprotectants-dimethyl sulfoxide (Me2SO), glycerol, methanol (MeOH), 1,2-propylene glycol (PG) and ethylene glycol (EG). In addition, cryoprotective efficiency to flounder embryos of individual and combined cryoprotectants were tested at -15 degrees C for 60 min. Five different concentrations of each of the five cryoprotectants and 20 different combinations of these cryoprotectants were tested for their protective efficiency. The results showed that the toxicity to flounder embryos of the five cryoprotectants are in the following sequence: PG < MeOH < Me2SO < glycerol < EG (P < 0.05); whereas the protective efficiency of each cryoprotectant, at -15 degrees C for a period of 60 min, are in the following sequence: PG > Me2SO approximate to MeOH approximate to glycerol > EG (greater symbols mean P < 0.05, and approximate symbols mean P > 0.05). Methanol combined with any one of the other cryoprotectants gave the best protection, while ethylene glycol combined with any one of the other cryoprotectants gave the poorest protection at -15 degrees C. Toxicity effect was concentration dependent with the lowest concentration being the least toxic for all five cryoprotectants at 16 degrees C. For PG, MeOH and glycerol, 20% solutions gave the best protection at -15 degrees C; whereas a 15% solution of Me2SO, and a 10% solution of EG, gave the best protection at -15 degrees C. (c) 2004 Elsevier Inc. All rights reserved.
Resumo:
In old China there were very few people engaged in the study of the algae, but in new China, freshwater and marine algae are studied by over one hundred old and new phycologists. There is now an algal biotechnology industry consisting of an aquaculture industry, producing large amounts of the seaweeds Laminaria, Porphyra, Undaria, Gracilaria, eucheumoids, and the microalgae Dunaliella and Spirulina. There is also a phycocolloid industry, producing algin, agar and carrageenan; an industry producing chemicals and drugs, such as iodine, mannitol, phycocyanin, beta -carotene, PSS (propylene glycol alginate sulfate) and FPS (fucose-containing sulfated polysaccharides) and an industry producing food, feed and fertilizer. The Laminaria cultivation industry produces about 900,000 t dry Laminaria, probably the largest producer in the world and 13,000 t algin, undoubtedly one of the largest algin producer in the world.
Resumo:
In this study several parameters critical to the success of cryopreserving Sydney rock oyster (Saccostrea glomerata) larvae were investigated. They were: (1) cryoprotectants (10% dimethyl sulfoxide and 10% propylene glycol). (2) freezing protocols (with or without the seeding step). (3) larval concentrations (1,000, 3,000, 5,000, 10,000, 30,000 individuals mL(-1)). and (4) larval ages (6, 12, 24, 48 and 96 h old). The survival rates were determined as percentages of postthaw larvae performing active movements for the 6 and 12 h larvae or active cilia movement for the 24, 48 and 96 h larvae. Analyses showed that the difference in survival rates between different age classses was significant in all the experiments conducted, with the maximum survival rate being achieved in the 24-h-old larvae the postthaw survival rates of larvae cryopreserved with 10% dimethyl sulfoxide (93.1 +/- 0.2%) were significantly higher (P < 0.001) that those with 10% propylene glycol (81.5 +/- 0.4%). Differences in postthaw survival rates between different concentrations (1,000 30,000 individuals mL(-1)) were not significant within each of the three larval age classes (6-, 12-, and 24-h-old ) used.
Resumo:
The objectives were to investigate the effect of cryoprotectants on the hatching rate of red seabream embryos. Heart-beat embryos were immersed in: five permeable cryoprotectants, dimethyl sulfoxide (DMSO), glycerol (Gly), methanol (MeOH), 1,2-propylene glycol (PG), and ethylene glycol (EG). in concentrations of 5-30% for 10, 30, or 60 min; and two non-permeable cryoprotectants: polyvinylpyrrolidone (PVP), and sucrose (in concentrations of 5-20% for 10 or 30 min). The embryos were then washed and incubated in filtered seawater until hatching occurred. The hatching rate of the embryos treated with permeable cryoprotectants decreased (P < 0.05) with increased concentration and duration of exposure. In addition, PG was the least toxic permeable cryoprotectant, followed by DMSO and EG, whereas Gly and MeOH were the most toxic. At a concentration of 15% and 30 min exposure, the hatching rate of the embryos immersed in PG was 93.3 +/- 7.0% (mean +/- S.D.), however. in DMSO. EG, Gly. and MeOH, it was 82.7 +/- 10.4, 22.0 +/- 5.7, 0.0 +/- 0.0, and 0.0 +/- 0.0%, respectively. Hatching rate of embryos treated with PVP decreased (P < 0.05) with the increase of concentration and exposure time, whereas for embryos treated with sucrose, there was no significant decrease in comparison with the control at the concentrations used. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The objective was to identify an appropriate cryoprotectant and protocol for vitrification of red sea bream (Pagrus major) embryos. The toxicity of five single-agent cryoprotectants, dimethyl sulfoxide (DMSO), propylene glycol (PG), ethylene glycol (EG), glycerol (GLY), and methyl alcohol (MeOH), as well as nine cryoprotectant mixtures, were investigated by comparing post-thaw hatching rates. Two vitrifying protocols, a straw method and a solid surface vitrification method (copper floating over liquid nitrogen), were evaluated on the basis of post-thaw embryo morphology. Exposure to single-agent cryoprotectants (10% concentration for 15 min) was not toxic to embryos, whereas for higher concentrations (20 and 30%) and a longer duration of exposure (30 min), DMSO and PG were better tolerated than the other cryoprotectants. Among nine cryoprotectant mixtures, the combination of 20% DMSO + 10% PG + 10% MeOH had the lowest toxicity after exposure for 10 min or 15 min. High percentages of morphologically intact embryos, 50.6 +/- 16.7% (mean +/- S.D.) and 77.8 +/- 15.5%, were achieved by the straw vitrifying method (20.5% DMSO + 15.5% acetamide + 10% PG, thawing at 43 degrees C and washing in 0.5 M sucrose solution for 5 min) and by the solid surface vitrification method (40% GLY, thawing at 22 degrees C and washing in 0.5 M sucrose solution for 5 min). After thawing, morphological changes in the degenerated embryos included shrunken yolks and ruptured chorions. Furthermore, thawed embryos that were morphologically intact did not consistently survive incubation. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The catalytic performances of Mn-based catalysts have been investigated for the oxidative dehydrogenation of both ethane (ODE) and propane (ODP). The results show that a LiCl/MnOx/PC (Portland cement) catalyst has an excellent catalytic performance for oxidative dehydrogenation of both ethane and propane to ethylene and propylene, more than 60% alkanes conversion and more than 80% olefins selectivity could be achieved at 650 degrees C. In addition, the results indicate that Mn-based catalysts belong to p-type semiconductors, the electrical conductivity of which is the main factor in influencing the olefins selectivity. Lithium, chlorine and PC in the LiCl/MnOx/PC catalyst are all necessary components to keep the excellent catalytic performance at a low temperature.