971 resultados para Process system value
Resumo:
Conventional threading operations involve two distinct machining processes: drilling and threading. Therefore, it is time consuming for the tools must be changed and the workpiece has to be moved to another machine. This paper presents an analysis of the combined process (drilling followed by threading) using a single tool for both operations: the tap-milling tool. Before presenting the methodology used to evaluate this hybrid tool, the ODS (operating deflection shapes) basics is shortly described. ODS and finite element modeling (FEM) were used during this research to optimize the process aiming to achieve higher stable machining conditions and increasing the tool life. Both methods allowed the determination of the natural frequencies and displacements of the machining center and optimize the workpiece fixture system. The results showed that there is an excellent correlation between the dynamic stability of the machining center-tool holder and the tool life, avoiding a tool premature catastrophic failure. Nevertheless, evidence showed that the tool is very sensitive to work conditions. Undoubtedly, the use of ODS and FEM eliminate empiric decisions concerning the optimization of machining conditions and increase drastically the tool life. After the ODS and FEM studies, it was possible to optimize the process and work material fixture system and machine more than 30,000 threaded holes without reaching the tool life limit and catastrophic fail.
Resumo:
The machining of hardened steels has always been a great challenge in metal cutting, particularly for drilling operations. Generally, drilling is the machining process that is most difficult to cool due to the tool`s geometry. The aim of this work is to determine the heat flux and the coefficient of convection in drilling using the inverse heat conduction method. Temperature was assessed during the drilling of hardened AISI H13 steel using the embedded thermocouple technique. Dry machining and two cooling/lubrication systems were used, and thermocouples were fixed at distances very close to the hole`s wall. Tests were replicated for each condition, and were carried out with new and worn drills. An analytical heat conduction model was used to calculate the temperature at tool-workpiece interface and to define the heat flux and the coefficient of convection. In all tests using new and worn out drills, the lowest temperatures and decrease of heat flux were observed using the flooded system, followed by the MQL, considering the dry condition as reference. The decrease of temperature was directly proportional to the amount of lubricant applied and was significant in the MQL system when compared to dry cutting. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper aims to investigate the influence of some dissolved air flotation (DAF) process variables (specifically: the hydraulic detention time in the contact zone and the supplied dissolved air concentration) and the pH values, as pretreatment chemical variables, on the micro-bubble size distribution (BSD) in a DAF contact zone. This work was carried out in a pilot plant where bubbles were measured by an appropriate non-intrusive image acquisition system. The results show that the obtained diameter ranges were in agreement with values reported in the literature (10-100mm), quite independently of the investigated conditions. The linear average diameter varied from 20 to 30mm, or equivalently, the Sauter (d(3,2)) diameter varied from 40 to 50mm. In all investigated conditions, D(50) was between 75% and 95%. The BSD might present different profile (with a bimodal curve trend), however, when analyzing the volumetric frequency distribution (in some cases with the appearance of peaks in diameters ranging from 90-100mm). Regarding volumetric frequency analysis, all the investigated parameters can modify the BSD in DAF contact zone after the release point, thus potentially causing changes in DAF kinetics. This finding prompts further research in order to verify the effect of these BSD changes on solid particle removal efficiency by DAF.
Resumo:
The effect of a lipase-rich fungal enzymatic preparation, produced by a Penicillium sp. during solid-state fermentation, was evaluated in an anaerobic digester treating dairy wastewater with 1200 mg of oil and grease/L The oil and grease hydrolysis step was carried out with 0.1% (w/v) of solid enzymatic preparation at 30 degrees C for 24 h, and resulted in a final free acid concentration eight times higher than the initial value. The digester operated in sequential batches of 48 h at 30 degrees C for 245 days, and had high chemical oxygen demand (COD) removal efficiencies (around 90%) when fed with pre-hydrolyzed wastewater. However, when the pre-hydrolysis step was removed, the anaerobic digester performed poorly (with an average COD removal of 32%), as the oil and grease accumulated in the biomass and effluent oil and grease concentration increased throughout the operational period. PCR-DGGE analysis of the Bacteria and Archaea domains revealed remarkable differences in the microbial profiles in trials conducted with and without the pre-hydrolysis step, indicating that differences observed in overall parameters were intrinsically related to the microbial diversity of the anaerobic sludge. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a proposal for a Quality Management System for a generic GNSS Surveying Company as an alternative for management and service quality improvements. As a result of the increased demand for GNSS measurements, a large number of new or restructured companies were established to operate in that market. Considering that GNSS surveying is a new process, some changes must be performed in order to accommodate the old surveying techniques and the old fashioned management to the new reality. This requires a new management model that must be based on a well-described procedure sequence aiming at the Total Management Quality for the company. The proposed Quality Management System was based on the requirements of the Quality System ISO 9000:2000, applied to the whole company, focusing on the productive process of GNSS surveying work.
Resumo:
The purpose is to present a scientific research that led to the modeling of an information system which aimed at the maintenance of traceability data in the Brazilian wine industry, according to the principles of a service-oriented architecture (SOA). Since 2005, traceability data maintenance is an obligation for all producers that intend to export to any European Union country. Also, final customers, including the Brazilian ones, have been asking for information about food products. A solution that collectively contemplated the industry was sought in order to permit that producer consortiums of associations could share the costs and benefits of such a solution. Following an extensive bibliographic review, a series of interviews conducted with Brazilian researchers and wine producers in Bento Goncalves - RS, Brazil, elucidated many aspects associated with the wine production process. Information technology issues related to the theme were also researched. The software was modeled with the Unified Modeling Language (UML) and uses web services for data exchange. A model for the wine production process was also proposed. A functional prototype showed that the adopted model is able to fulfill the demands of wine producers. The good results obtained lead us to consider the use of this model in other domains.
Resumo:
In the last decades, the air traffic system has been changing to adapt itself to new social demands, mainly the safe growth of worldwide traffic capacity. Those changes are ruled by the Communication, Navigation, Surveillance/Air Traffic Management (CNS/ATM) paradigm, based on digital communication technologies (mainly satellites) as a way of improving communication, surveillance, navigation and air traffic management services. However, CNS/ATM poses new challenges and needs, mainly related to the safety assessment process. In face of these new challenges, and considering the main characteristics of the CNS/ATM, a methodology is proposed at this work by combining ""absolute"" and ""relative"" safety assessment methods adopted by the International Civil Aviation Organization (ICAO) in ICAO Doc.9689 [14], using Fluid Stochastic Petri Nets (FSPN) as the modeling formalism, and compares the safety metrics estimated from the simulation of both the proposed (in analysis) and the legacy system models. To demonstrate its usefulness, the proposed methodology was applied to the ""Automatic Dependent Surveillance-Broadcasting"" (ADS-B) based air traffic control system. As conclusions, the proposed methodology assured to assess CNS/ATM system safety properties, in which FSPN formalism provides important modeling capabilities, and discrete event simulation allowing the estimation of the desired safety metric. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper shows a new hybrid method for risk assessment regarding interruptions in sensitive processes due to faults in electric power distribution systems. This method determines indices related to long duration interruptions and short duration voltage variations (SDVV), such as voltage sags and swells in each customer supplied by the distribution network. Frequency of such occurrences and their impact on customer processes are determined for each bus and classified according to their corresponding magnitude and duration. The method is based on information regarding network configuration, system parameters and protective devices. It randomly generates a number of fault scenarios in order to assess risk areas regarding long duration interruptions and voltage sags and swells in an especially inventive way, including frequency of events according to their magnitude and duration. Based on sensitivity curves, the method determines frequency indices regarding disruption in customer processes that represent equipment malfunction and possible process interruptions due to voltage sags and swells. Such approach allows for the assessment of the annual costs associated with each one of the evaluated power quality indices.
Resumo:
Tropical countries, such as Brazil and Colombia, have the possibility of using agricultural lands for growing biomass to produce bio-fuels such as biodiesel and ethanol. This study applies an energy analysis to the production process of anhydrous ethanol obtained from the hydrolysis of starch and cellulosic and hemicellulosic material present in the banana fruit and its residual biomass. Four different production routes were analyzed: acid hydrolysis of amylaceous material (banana pulp and banana fruit) and enzymatic hydrolysis of lignocellulosic material (flower stalk and banana skin). The analysis considered banana plant cultivation, feedstock transport, hydrolysis, fermentation, distillation, dehydration, residue treatment and utility plant. The best indexes were obtained for amylaceous material for which mass performance varied from 346.5 L/t to 388.7 L/t, Net Energy Value (NEV) ranged from 9.86 MJ/L to 9.94 MJ/L and the energy ratio was 1.9 MJ/MJ. For lignocellulosic materials, the figures were less favorable: mass performance varied from 86.1 to 123.5 L/t, NEV from 5.24 10 8.79 MJ/L and energy ratio from 1.3 to 1.6 MJ/MJ. The analysis showed, however, that both processes can be considered energetically feasible. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Piezoactuators consist of compliant mechanisms actuated by two or more piezoceramic devices. During the assembling process, such flexible structures are usually bonded to the piezoceramics. The thin bonding layer(s) between the compliant mechanism and the piezoceramic may induce undesirable behavior, including unusual interfacial nonlinearities. This constitutes a drawback of piezoelectric actuators and, in some applications, such as those associated to vibration control and structural health monitoring (e. g., aircraft industry), their use may become either unfeasible or at least limited. A possible solution to this standing problem can be achieved through the functionally graded material concept and consists of developing `integral piezoactuators`, that is those with no bonding layer(s) and whose performance can be improved by tailoring their structural topology and material gradation. Thus, a topology optimization formulation is developed, which allows simultaneous distribution of void and functionally graded piezoelectric materials (including both piezo and non-piezoelectric materials) in the design domain in order to achieve certain specified actuation movements. Two concurrent design problems are considered, that is the optimum design of the piezoceramic property gradation, and the design of the functionally graded structural topology. Two-dimensional piezoactuator designs are investigated because the applications of interest consist of planar devices. Moreover, material gradation is considered in only one direction in order to account for manufacturability issues. To broaden the range of such devices in the field of smart structures, the design of integral Moonie-type functionally graded piezoactuators is provided according to specified performance requirements.
Resumo:
In this paper, a supervisor system, able to diagnose different types of faults during the operation of a proton exchange membrane fuel cell is introduced. The diagnosis is developed by applying Bayesian networks, which qualify and quantify the cause-effect relationship among the variables of the process. The fault diagnosis is based on the on-line monitoring of variables easy to measure in the machine such as voltage, electric current, and temperature. The equipment is a fuel cell system which can operate even when a fault occurs. The fault effects are based on experiments on the fault tolerant fuel cell, which are reproduced in a fuel cell model. A database of fault records is constructed from the fuel cell model, improving the generation time and avoiding permanent damage to the equipment. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This contribution describes the development of a continuous emulsion copolymerization processs for vinyl acetate and n-butyl acrylate in a tubular reactor. Special features of this reactor include the use of oscillatory (pulsed) flow and internals (sieve plates) to prevent polymer fouling and promote good radial mixing, along with a controlled amount of axial mixing. The copolymer system studied (vinyl acetate and butyl acrylate) is strongly prone to composition drift due to very different reactivity ratios. An axially dispersed plug flow model, based on classical free radical copolymerization kinetics, was developed for this process and used successfully to optimize the lateral feeding profile to reduce compositional drift. An energy balance was included in the model equations to predict the effect of temperature variations on the process. The model predictions were validated with experimental data for monomer conversion, copolymer composition, average particle size, and temperature measured along the reactor length.
Resumo:
This work presents a mathematical model for the vinyl acetate and n-butyl acrylate emulsion copolymerization process in batch reactors. The model is able to explain the effects of simultaneous changes in emulsifier concentration, initiator concentration, monomer-to-water ratio, and monomer feed composition on monomer conversion, copolymer composition and, to lesser extent, average particle size evolution histories. The main features of the system, such as the increase in the rate of polymerization as temperature, emulsifier, and initiator concentrations increase are correctly represented by the model. The model accounts for the basic features of the process and may be useful for practical applications, despite its simplicity and a reduced number of adjustable parameters.
Resumo:
Oxidation processes can be used to treat industrial wastewater containing non-biodegradable organic compounds. However, the presence of dissolved salts may inhibit or retard the treatment process. In this study, wastewater desalination by electrodialysis (ED) associated with an advanced oxidation process (photo-Fenton) was applied to an aqueous NaCl solution containing phenol. The influence of process variables on the demineralization factor was investigated for ED in pilot scale and a correlation was obtained between the phenol, salt and water fluxes with the driving force. The oxidation process was investigated in a laboratory batch reactor and a model based on artificial neural networks was developed by fitting the experimental data describing the reaction rate as a function of the input variables. With the experimental parameters of both processes, a dynamic model was developed for ED and a continuous model, using a plug flow reactor approach, for the oxidation process. Finally, the hybrid model simulation could validate different scenarios of the integrated system and can be used for process optimization.
Diagnostic errors and repetitive sequential classifications in on-line process control by attributes
Resumo:
The procedure of on-line process control by attributes, known as Taguchi`s on-line process control, consists of inspecting the mth item (a single item) at every m produced items and deciding, at each inspection, whether the fraction of conforming items was reduced or not. If the inspected item is nonconforming, the production is stopped for adjustment. As the inspection system can be subject to diagnosis errors, one develops a probabilistic model that classifies repeatedly the examined item until a conforming or b non-conforming classification is observed. The first event that occurs (a conforming classifications or b non-conforming classifications) determines the final classification of the examined item. Proprieties of an ergodic Markov chain were used to get the expression of average cost of the system of control, which can be optimized by three parameters: the sampling interval of the inspections (m); the number of repeated conforming classifications (a); and the number of repeated non-conforming classifications (b). The optimum design is compared with two alternative approaches: the first one consists of a simple preventive policy. The production system is adjusted at every n produced items (no inspection is performed). The second classifies the examined item repeatedly r (fixed) times and considers it conforming if most classification results are conforming. Results indicate that the current proposal performs better than the procedure that fixes the number of repeated classifications and classifies the examined item as conforming if most classifications were conforming. On the other hand, the preventive policy can be averagely the most economical alternative rather than those ones that require inspection depending on the degree of errors and costs. A numerical example illustrates the proposed procedure. (C) 2009 Elsevier B. V. All rights reserved.