917 resultados para Probabilistic constraints
Resumo:
Process-based integrated modelling of weather and crop yield over large areas is becoming an important research topic. The production of the DEMETER ensemble hindcasts of weather allows this work to be carried out in a probabilistic framework. In this study, ensembles of crop yield (groundnut, Arachis hypogaea L.) were produced for 10 2.5 degrees x 2.5 degrees grid cells in western India using the DEMETER ensembles and the general large-area model (GLAM) for annual crops. Four key issues are addressed by this study. First, crop model calibration methods for use with weather ensemble data are assessed. Calibration using yield ensembles was more successful than calibration using reanalysis data (the European Centre for Medium-Range Weather Forecasts 40-yr reanalysis, ERA40). Secondly, the potential for probabilistic forecasting of crop failure is examined. The hindcasts show skill in the prediction of crop failure, with more severe failures being more predictable. Thirdly, the use of yield ensemble means to predict interannual variability in crop yield is examined and their skill assessed relative to baseline simulations using ERA40. The accuracy of multi-model yield ensemble means is equal to or greater than the accuracy using ERA40. Fourthly, the impact of two key uncertainties, sowing window and spatial scale, is briefly examined. The impact of uncertainty in the sowing window is greater with ERA40 than with the multi-model yield ensemble mean. Subgrid heterogeneity affects model accuracy: where correlations are low on the grid scale, they may be significantly positive on the subgrid scale. The implications of the results of this study for yield forecasting on seasonal time-scales are as follows. (i) There is the potential for probabilistic forecasting of crop failure (defined by a threshold yield value); forecasting of yield terciles shows less potential. (ii) Any improvement in the skill of climate models has the potential to translate into improved deterministic yield prediction. (iii) Whilst model input uncertainties are important, uncertainty in the sowing window may not require specific modelling. The implications of the results of this study for yield forecasting on multidecadal (climate change) time-scales are as follows. (i) The skill in the ensemble mean suggests that the perturbation, within uncertainty bounds, of crop and climate parameters, could potentially average out some of the errors associated with mean yield prediction. (ii) For a given technology trend, decadal fluctuations in the yield-gap parameter used by GLAM may be relatively small, implying some predictability on those time-scales.
Resumo:
Development policies in the pastoral areas of Africa assume that pastoralists are poor. Using the Afar pastoralists of Ethiopia as the focus of research this article challenges this depiction of pastoralism by exploring pastoral livelihood goals and traditional strategies for managing risk. Investment in social institutions to minimise the risk of outright destitution, sometimes at the cost of increased poverty, and significant manipulation of local markets enable the Afar to exploit a highly uncertain and marginal environment. Improved development assistance and enhanced targeting of the truly vulnerable within pastoral societies demands an acceptance that pastoral poverty is neither uniform nor universal.
Resumo:
Constraints to the introduction of enhanced biosecurity systems are rarely considered in sufficient detail when population medicine specialists initiate new control schemes. The main objective of our research was to investigate and compare the different attitudes constraining improvement in biosecurity for cattle and sheep farmers, practising veterinary surgeons and the auxiliary industries in Great Britain (GB). This study was carried out utilizing farmer focus groups, a questionnaire survey of veterinary practitioners and a telephone survey of auxiliary industry representatives. It appears that farmers and veterinarians have their own relatively clear definitions for biosecurity in relation to some major diseases threatening GB agriculture. Overall, farmers believe that other stakeholders, such as the government, should make a greater contribution towards biosecurity within GB. Conversely, veterinary practitioners saw their clients' ability or willingness to invest in biosecurity measures as a major constraint. Veterinary practitioners also felt that there was need for additional proof of efficacy and/or the potential economic benefits of proposed farm biosecurity practices better demonstrated. Auxiliary industries, in general, were not certain of their role in biosecurity although study participants highlighted zoonoses as part of the issue and offered that most of the constraints operated at farm level. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Constraints to the introduction of enhanced biosecurity systems are rarely considered in sufficient detail when population medicine specialists initiate new control schemes. The main objective of our research was to investigate and compare the different attitudes constraining improvement in biosecurity for cattle and sheep farmers, practising veterinary surgeons and the auxiliary industries in Great Britain (GB). This study was carried out utilizing farmer focus groups, a questionnaire survey of veterinary practitioners and a telephone survey of auxiliary industry representatives. It appears that farmers and veterinarians have their own relatively clear definitions for biosecurity in relation to some major diseases threatening GB agriculture. Overall, farmers believe that other stakeholders, such as the government, should make a greater contribution towards biosecurity within GB. Conversely, veterinary practitioners saw their clients' ability or willingness to invest in biosecurity measures as a major constraint. Veterinary practitioners also felt that there was need for additional proof of efficacy and/or the potential economic benefits of proposed farm biosecurity practices better demonstrated. Auxiliary industries, in general, were not certain of their role in biosecurity although study participants highlighted zoonoses as part of the issue and offered that most of the constraints operated at farm level. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we evaluate the Probabilistic Occupancy Map (POM) pedestrian detection algorithm on the PETS 2009 benchmark dataset. POM is a multi-camera generative detection method, which estimates ground plane occupancy from multiple background subtraction views. Occupancy probabilities are iteratively estimated by fitting a synthetic model of the background subtraction to the binary foreground motion. Furthermore, we test the integration of this algorithm into a larger framework designed for understanding human activities in real environments. We demonstrate accurate detection and localization on the PETS dataset, despite suboptimal calibration and foreground motion segmentation input.
Resumo:
This paper illustrates how nonlinear programming and simulation tools, which are available in packages such as MATLAB and SIMULINK, can easily be used to solve optimal control problems with state- and/or input-dependent inequality constraints. The method presented is illustrated with a model of a single-link manipulator. The method is suitable to be taught to advanced undergraduate and Master's level students in control engineering.
Resumo:
The combination of model predictive control based on linear models (MPC) with feedback linearization (FL) has attracted interest for a number of years, giving rise to MPC+FL control schemes. An important advantage of such schemes is that feedback linearizable plants can be controlled with a linear predictive controller with a fixed model. Handling input constraints within such schemes is difficult since simple bound contraints on the input become state dependent because of the nonlinear transformation introduced by feedback linearization. This paper introduces a technique for handling input constraints within a real time MPC/FL scheme, where the plant model employed is a class of dynamic neural networks. The technique is based on a simple affine transformation of the feasible area. A simulated case study is presented to illustrate the use and benefits of the technique.
Resumo:
We present a novel topology of the radial basis function (RBF) neural network, referred to as the boundary value constraints (BVC)-RBF, which is able to automatically satisfy a set of BVC. Unlike most existing neural networks whereby the model is identified via learning from observational data only, the proposed BVC-RBF offers a generic framework by taking into account both the deterministic prior knowledge and the stochastic data in an intelligent manner. Like a conventional RBF, the proposed BVC-RBF has a linear-in-the-parameter structure, such that it is advantageous that many of the existing algorithms for linear-in-the-parameters models are directly applicable. The BVC satisfaction properties of the proposed BVC-RBF are discussed. Finally, numerical examples based on the combined D-optimality-based orthogonal least squares algorithm are utilized to illustrate the performance of the proposed BVC-RBF for completeness.
Resumo:
We introduce a classification-based approach to finding occluding texture boundaries. The classifier is composed of a set of weak learners, which operate on image intensity discriminative features that are defined on small patches and are fast to compute. A database that is designed to simulate digitized occluding contours of textured objects in natural images is used to train the weak learners. The trained classifier score is then used to obtain a probabilistic model for the presence of texture transitions, which can readily be used for line search texture boundary detection in the direction normal to an initial boundary estimate. This method is fast and therefore suitable for real-time and interactive applications. It works as a robust estimator, which requires a ribbon-like search region and can handle complex texture structures without requiring a large number of observations. We demonstrate results both in the context of interactive 2D delineation and of fast 3D tracking and compare its performance with other existing methods for line search boundary detection.
Resumo:
A new probabilistic neural network (PNN) learning algorithm based on forward constrained selection (PNN-FCS) is proposed. An incremental learning scheme is adopted such that at each step, new neurons, one for each class, are selected from the training samples arid the weights of the neurons are estimated so as to minimize the overall misclassification error rate. In this manner, only the most significant training samples are used as the neurons. It is shown by simulation that the resultant networks of PNN-FCS have good classification performance compared to other types of classifiers, but much smaller model sizes than conventional PNN.
Resumo:
Based on the idea of an important cluster, a new multi-level probabilistic neural network (MLPNN) is introduced. The MLPNN uses an incremental constructive approach, i.e. it grows level by level. The construction algorithm of the MLPNN is proposed such that the classification accuracy monotonically increases to ensure that the classification accuracy of the MLPNN is higher than or equal to that of the traditional PNN. Numerical examples are included to demonstrate the effectiveness of proposed new approach.