927 resultados para Pressure sore or ulcer sore


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mandrel peel tests with mandrels or rollers of varying diameters have been carried out using Mylar backing of several thicknesses and a commercial synthetic acrylic adhesive. The results are critically compared with the numerical predictions of the peeling software package ICPeel. In addition, a finite element model of the mandrel peeling process has been completed which gives good agreement with experiment provided appropriate mechanical properties of adherend and adhesive are used which must include the effects of adherent constraint. The influence of the thickness of the backing is also considered and both experiment and analysis confirm that there is a backing thickness at which the peel force for a laminate of this sort will show a maximum. © 2010 Blackwell Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Uganda sector of Lake Victoria occupies 29,580 km2 (43%). The lake used to boast of a multi-species fishery but presently relies on three major species Lates niloticus, Oreochromis niloticus and Rastrineobola argentea. During the past decade the total fish production on the Ugandan sector increased drastically from 17,000 tonnes in 1981 to about 13,000 tonnes 1991, indicating a healthy state of the fishery. This was contributed by a combination of factors including the explosive establishment of the introduced L. niloticus which contributed 60.8% in 1991 and the increase in the number of fishing canoes from 3470 in 1988 to 8000 in 1990. Isolated fishery resources studies carried out in different areas of the lake since 1971 seem, however, to indicate contrary trends in the available stocks and, therefore, the status of the fishery. In the experimental fishery, continued decline in catch rates have been recorded. Similarly, in the commercial fishery catch per unit of effort has been considerably poor (33 kg per canoe during January - March 1992) and the average size of individual fish laRded continued to decline, obviously pointing at possible over-fishing. This, therefore, calls for further urgent research on the available stocks for proper management strategies to be formulated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A systematic study of the Cu-catalyzed chemical vapor deposition of graphene under extremely low partial pressure is carried out. A carbon precursor supply of just P CH4∼ 0.009 mbar during the deposition favors the formation of large-area uniform monolayer graphene verified by Raman spectra. A diluted HNO 3 solution is used to remove Cu before transferring graphene onto SiO 2/Si substrates or carbon grids. The graphene can be made suspended over a ∼12 μm distance, indicating its good mechanical properties. Electron transport measurements show the graphene sheet resistance of ∼0.6 kΩ/□ at zero gate voltage. The mobilities of electrons and holes are ∼1800 cm 2/Vs at 4.2 K and ∼1200 cm 2/Vs at room temperature. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At low mass flow rates axial compressors suffer from flow instabilities leading to stall and surge. The inception process of these instabilities has been widely researched in the past - primarily with the aim of predicting or averting stall onset. In recent times, attention has shifted to conditions well before stall and has focussed on the level of irregularity in the blade passing signature in the rotor tip region. In general, this irregularity increases in intensity as the flow rate through the compressor is reduced. Attempts have been made to develop stall warning/avoidance procedures based on the level of the flow irregularity, but little effort has been made to characterise the irregularity, or to understand its underlying causes. Work on this project has revealed for the first time that the increase in irregularity in the blade passing signature is highly dependent on both tip-clearance and eccentricity. In a compressor with small, uniform, tip-clearance, the increase in blade passing irregularity which accompanies a reduction in flow rate will be modest. If the tip-clearance is enlarged, however, there will be a sharp rise in irregularity at all circumferential locations. In a compressor with eccentric tip-clearance, the increase in irregularity will only occur in the part of the annulus where the tip-clearance is largest, regardless of the average clearance level. In this paper, some attention is also given to the question of whether this irregularity observed in the pre-stall flow field is due to random turbulence, or to some form of coherent flow structure. Detailed flow measurements reveal that the latter is the case. From these findings, it is clear that a stall warning system based on blade passing signature irregularity will not be viable in an aero-engine where tip-clearance size and eccentricity change during each flight cycle and over the life of the compressor. Copyright © 2011 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At low mass flow rates, axial compressors suffer from flow instabilities leading to stall and surge. The inception process of these instabilities has been widely researched in the past---primarily with the aim of predicting or averting stall onset. In recent times, attention has shifted to conditions well before stall and has focused on the level of irregularity in the blade passing signature in the rotor tip region. In general, the irregularity increases in intensity as the flow rate through the compressor is reduced. Attempts have been made to develop stall warning/avoidance procedures based on the level of flow irregularity, but little effort has been made to characterize the irregularity itself, or to understand its underlying cause. Work on this project has revealed for the first time that the increase in irregularity in the blade passing signature is highly dependent on both tip-clearance size and eccentricity. In a compressor with small, uniform, tip-clearance, the increase in blade passing irregularity that accompanies a reduction in flow rate will be modest. If the tip-clearance is enlarged, however, there will be a sharp rise in irregularity at all circumferential locations. In a compressor with eccentric tip-clearance, the increase in irregularity will only occur in the part of the annulus where the tip-clearance is largest, regardless of the average clearance level. In this paper, some attention is also given to the question of whether the irregularity observed in the prestall flow field is due to random turbulence or to some form of coherent flow structure. Detailed flow measurements reveal that the latter is the case. From these findings, it is clear that a stall warning system based on blade passing signature irregularity would be difficult to implement in an aero-engine where tip-clearance size and eccentricity change during each flight cycle and over the life of the compressor. © 2013 American Society of Mechanical Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the design of winglet tips for unshrouded high pressure turbine rotors, considering aerodynamic and thermal performance simultaneously. A novel parameterization method has been developed to alter the tip geometry of a rotor blade. A design survey of un-cooled, flat-tipped winglets is performed using RANS calculations for a single rotor at engine representative operating conditions. Compared to a plain tip, large efficiency gains can be realized by employing an overhang around the full perimeter of the blade, but the overall heat load rises significantly. By employing an overhang on only the early suction surface, significant efficiency improvements can be obtained without increasing the overall heat transfer to the blade. The flow physics are explored in detail to explain the results. For a plain tip, the leakage and passage vortices interact to create a three-dimensional impingement onto the blade suction surface, causing high heat transfer. The addition of an overhang on the early suction surface displaces the tip leakage vortex away from the blade, weakening the impingement effect and reducing the heat transfer on the blade. The winglets reduce the aerodynamic losses by unloading the tip section, reducing the leakage flow rate, turning the leakage flow in a more streamwise direction and reducing the interaction between the leakage fluid and endwall flows. Generally these effects are most effective close to the leading edge of the tip, where the leakage flow is subsonic.