950 resultados para Power-law exponent
Resumo:
We present atomic force microscopic images of the interphase morphology of vertically segregated thin films spin coated from two-component mixtures of poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene-vinylene] (MEH-PPV) and polystyrene (PS). We investigate the mechanism leading to the formation of wetting layers and lateral structures during spin coating using different PS molecular weights, solvents and blend compositions. Spinodal decomposition competes with the formation of surface enrichment layers. The spinodal wavelength as a function of PS molecular weight follows a power-law similar to bulk-like spinodal decomposition. Our experimental results indicate that length scales of interface topographical features can be adjusted from the nanometer to micrometer range. The importance of controlled arrangement of semiconducting polymers in thin film geometries for organic optoelectronic device applications is discussed. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
We present the zero-temperature phase diagram of the one-dimensional t(2g)-orbital Hubbard model, obtained using the density-matrix renormalization group and Lanczos techniques. Emphasis is given to the case of the electron density n=5 corresponding to five electrons per site, while several other cases for electron densities between n=3 and 6 are also studied. At n=5, our results indicate a first-order transition between a paramagnetic (PM) insulator phase, with power-law slowly decaying correlations, and a fully polarized ferromagnetic (FM) state by tuning the Hund's coupling. The results also suggest a transition from the n=5 PM insulator phase to a metallic regime by changing the electron density, either via hole or electron doping. The behavior of the spin, charge, and orbital correlation functions in the FM and PM states are also described in the text and discussed. The robustness of these two states against varying parameters suggests that they may be of relevance in quasi-one-dimensional Co-oxide materials, or even in higher dimensional cobaltite systems as well.
Resumo:
Relativistic confining potential models, endowed with bag constants associated to volume energy terms, are investigated. In contrast to the usual bag model, these potential bags are distinguished by having smeared bag surfaces. Based on the dynamical assumptions underlying the fuzzy bag model, these bag constants are derived from the corresponding energy-momentum tensor. Explicit expressions for the single-quark energies and for the nucleon bag constant are obtained by means of an improved analytical version of the saddle-point variational method for the Dirac equation with confining power-law potentials of the scalar plus vector (S + V) or pure scalar (S) type.
Resumo:
The rheological behavior of coffee extract with different water contents (49 to 90%) was studied at a wide range of temperatures (274 to 365 K) using a concentric cylinder rheometer. The flow curves followed different models depending on the concentration and temperature level. Newtonian behavior was observed at high values of water content and temperature, changing to power law as these values were decreased. The Newtonian viscosity as well as the consistency and behavior index could be well correlated by functions simultaneously dependent on temperature and water content. The rheological parameters, together with experimental values of pressure loss in tube flow, were used to calculate friction factors. These showed to be in good agreement with those resulting from classical theoretical and empirical equations, thus confirming the reliability of the rheological measurements.
Resumo:
Power law scaling is observed in many physical, biological and socio-economical complex systems and is now considered an important property of these systems. In general, power law exists in the central part of the distribution. It has deviations from power law for very small and very large variable sizes. Tsallis, through non-extensive thermodynamics, explained power law distribution in many cases including deviation from the power law. In case of very large steps, the used the heuristic crossover approach. In the present we present an alternative model in which we consider that the entropy factor 9 decreases with variable size due to the softening of long range interactions or memory. We apply this model for distribution of citation index of scientists and examination scores and are able to explain the distribution for entire variable range. In the present model, we can have very sharp cut-off without interfering with power law in its central part as observed in many cases. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The temperature and velocity distributions of the air inside the cabinet of domestic refrigerators affect the quality of food products. If the consumer knows the location of warm and cold zones in the refrigerator, the products can be placed in the right zone. In addition, the knowledge of the thickness of thermal and hydrodynamic boundary layers near the evaporator and the other walls is also important. If the product is too close to the evaporator wall, freezing can occur, and if it is too close to warm walls, the products can be deteriorated. The aim of the present work is to develop a steady state computational fluid dynamics (CFD) model for domestic refrigerators working on natural convection regime. The Finite Volume Methodology is chosen as numerical procedure for discretizing the governing equations. The SIMPLE-Semi-Implicit Method for Pressure-Linked Equations algorithm applied to a staggered mesh was used for solving the pressure-velocity coupling problem. The Power-Law scheme is employed as interpolation function for the convective-diffusive terms, and the TDMA-Tri-Diagonal Matrix Algorithm is used to solve the systems of algebraic equations. The model is applied to a commercial static refrigerator, where the cabinet is considered an empty three-dimensional rectangular cavity with one drawer at the bottom of the cabinet, but without shelves. In order to analyze the velocity and temperature fields of the air flow inside the cabinet the evaporator temperature, Te, was varied from -20 degrees C to 0 degrees C, and nine different evaporator positions are evaluated for evaporator temperature of -15 degrees C. The cooling capacity of the evaporator for the steady state regime is also computed for each case. One can conclude that the vertical positioning of the evaporator inside the cabinet plays an important role on the temperature distribution inside the cabinet.
Resumo:
We present a model to describe inclusive meson production in e+e- reactions based on a quark cascade approach whose formulation is put in terms of diffusion equations for three quark flavors (u, d, s). These equations are solved by using a formalism previously developed for the problem of the electromagnetic cascade generated in the atmosphere by cosmicray interactions. The obtained solutions are given in terms of a combination of power-law functions whose profiles are adequate to describe the characteristics observed in the inclusive spectrum of mesons.
Resumo:
Power-law distributions, i.e. Levy flights have been observed in various economical, biological, and physical systems in high-frequency regime. These distributions can be successfully explained via gradually truncated Levy flight (GTLF). In general, these systems converge to a Gaussian distribution in the low-frequency regime. In the present work, we develop a model for the physical basis for the cut-off length in GTLF and its variation with respect to the time interval between successive observations. We observe that GTLF automatically approach a Gaussian distribution in the low-frequency regime. We applied the present method to analyze time series in some physical and financial systems. The agreement between the experimental results and theoretical curves is excellent. The present method can be applied to analyze time series in a variety of fields, which in turn provide a basis for the development of further microscopic models for the system. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
An artificial neural network (ANN) approach is proposed for the detection of workpiece `burn', the undesirable change in metallurgical properties of the material produced by overly aggressive or otherwise inappropriate grinding. The grinding acoustic emission (AE) signals for 52100 bearing steel were collected and digested to extract feature vectors that appear to be suitable for ANN processing. Two feature vectors are represented: one concerning band power, kurtosis and skew; and the other autoregressive (AR) coefficients. The result (burn or no-burn) of the signals was identified on the basis of hardness and profile tests after grinding. The trained neural network works remarkably well for burn detection. Other signal-processing approaches are also discussed, and among them the constant false-alarm rate (CFAR) power law and the mean-value deviance (MVD) prove useful.
Resumo:
Polyfluorenes are promising materials for the emitting layer of polymer light emitting devices (PLEDs) with blue emission. In this work, we report on PLEDs fabricated with Langmuir-Blodgett (LB) films of a polyfluorene derivative, namely poly(9,9-di-hexylfluorenediyl vinylene-alt-1,4-phenylenevinylene) (PDHF-PV). Y-type LB films were transferred onto ITO substrates at a surface pressure of 35 mN m-1 and with dipping speed of 3 mm min -1. A thin aluminum layer was evaporated on top of the LB film, thus yielding a sandwich structure (ITO/PDHF-PV(LB)/Al). Current-voltage (I vs V) measurements indicate that the device displays a classical behavior of a rectifying diode. The threshold value is approximately 5 V, and the onset for visible light emission occurs at ca. 10 V. From the a.c. electrical responses we infer that the active layer has a typical behavior of PLEDs where the real component of ac conductivity obeys a power-law with the frequency. Cole-Cole plots (Im(Z) vs. Re(Z)) for the device exhibit a series of semicircles, the diameter of which decreases with increasing forward bias. This PLED structure is modeled by a parallel resistance and capacitance combination, representing the dominant mechanisms of charge transport and polarization in the organic layer, in series with a resistance representing the ITO contact. Overall, the results presented here demonstrate the feasibility of LEDs made with LB films of PDHF-PV.
Resumo:
Thermal conductivity, thermal diffusivity, and density of yellow mombin juice were determined at 8.8-49.4 °Brix and at temperature from 0.4 to 77.1 °C. Apparent viscosity was also measured between 7.8 and 30 °Brix and at temperature from 0 to 60 °C. Yellow mombin juice was produced from fruits of two different batches and the concentration process was performed using a roto evaporator or a rising film evaporator, single effect, with recirculation, under vacuum, to obtain concentrated juice. In order to obtain different concentrations, concentrated juice was diluted with distilled water. Multiple regression analysis was performed to fit thermal conductivity, thermal diffusivity and density experimental data obtaining a good fit. Arrhenius and power law relationships were proposed to fit apparent viscosity as a function of temperature and juice concentration at typical shear rates found during processing. The rheological parameters together with experimental values of pressure loss in tube flow were used to calculate friction factors, which were compared to those resulting from theoretical equation.
Resumo:
We present results of our numerical study of the critical dynamics of percolation observables for the two-dimensional Ising model. We consider the (Monte Carlo) short-time evolution of the system with small initial magnetization and heat-bath dynamics. We find qualitatively different dynamic behaviors for the magnetization M and for Ω, the so-called strength of the percolating cluster, which is the order parameter of the percolation transition. More precisely, we obtain a (leading) exponential form for Ω as a function of the Monte Carlo time t, to be compared with the power-law increase encountered for M at short times. Our results suggest that, although the descriptions in terms of magnetic or percolation order parameters may be equivalent in the equilibrium regime, greater care must be taken to interpret percolation observables at short times.
Resumo:
Within a QCD-based eikonal model with a dynamical infrared gluon mass scale we discuss how the small x behavior of the gluon distribution function at moderate Q 2 is directly related to the rise of total hadronic cross-sections. In this model the rise of total cross-sections is driven by gluon-gluon semihard scattering processes, where the behavior of the small x gluon distribution function exhibits the power law xg(x, Q 2) = h(Q 2)x( -∈). Assuming that the Q 2 scale is proportional to the dynamical gluon mass one, we show that the values of h(Q 2) obtained in this model are compatible with an earlier result based on a specific nonperturbative Pomeron model. We discuss the implications of this picture for the behavior of input valence-like gluon distributions at low resolution scales. © 2008 World Scientific Publishing Company.
Resumo:
This research studied the effects of the independent variables whey protein concentrate - WPC (3.0; 3.5; 4.0%), skimmed milk powder - SMP (4.0; 5.0; 6.0%), and isolated soy protein - IPS (1.5; 2.0; 2.5%) on the rheological and sensorial characteristics of functional dairy beverages. In all tests 7% of sucrose was added to the ingredients. The rheological parameters were obtained in duplicate at the temperature of 10° C using a cone and plate rheometer, and fitted to the Power law model. The samples revealed a non-Newtonian fluid behavior both in the upward and downward curves, typical of a tixotropic fluid. The dairy beverages were submitted to a sensory analysis by a group of fifty untrained tasters who used a hedonic scale of nine points, the extremes being 1 - disliked extremely and 9 - liked extremely, in order to evaluate the following parameters: general acceptability; appearance and color; consistency; taste and aroma. The dairy beverage produced with 3% WPC, 6% SMP and 1.5% IPS, (treatment 3), was the one that obtained the best average score for those attributes and was preferred by the tasters. The variables SMP and IPS and the interaction between WPC and SMP presented a positive effect on the sensory consistency attributes: the higher amount of those ingredients in the formula the more the tasters liked the consistency.