931 resultados para Postprandial Hyperglycemia
Resumo:
In islet transplantation, nonimmunological factors such as limited growth capacity or increased death rate could reduce the beta cell mass in the graft and lead to failure of the transplant. We studied the evolution of beta cell replication and mass after transplantation of insufficient, minimally sufficient, or excessive islet tissue. Streptozocin diabetic C57BL/6 mice received 150 or 300 syngeneic islets under the kidney capsule and normal mice received 300 islets. In streptozocin diabetic mice 300 islets restored normoglycemia; beta cell replication in transplanted islets was similar to replication in normal pancreas and beta cell mass in the graft remained constant. In contrast, 150 islets were insufficient to achieve normoglycemia; beta cell replication was increased initially but not by 18 or 30 d despite persistent hyperglycemia, and beta cell mass fell progressively. When islets were transplanted into normal recipients, beta cell replication remained normal but beta cells underwent atrophy and mass in the graft was substantially reduced. Therefore, with a successful islet transplant, in diabetic mice beta cell replication and mass remain constant. In contrast, when insufficient islet tissue is transplanted an initial increase in beta cell replication can not compensate for a decline in beta cell mass. When excessive islet tissue is transplanted, beta cell mass is reduced despite normal beta cell replication.
Resumo:
We determined the capacity of transplanted beta cells to modify their replication and mass when stimulated by changes in metabolic demand. Five groups of Lewis rats were studied: group 1 (Tx-Px) had a 95% pancreatectomy 14 d after transplantation of 500 islets; group 2 (Px-Tx) had a 95% pancreatectomy 14 d before transplantation of 500 islets; group 3 (Tx) was transplanted with 500 islets; group 4 (Px) had a 95% pancreatectomy; and group 5 (normal) was neither transplanted nor pancreatectomized. Blood glucose was normal in Tx-Px and Tx groups at all times. Px-Tx and Px groups developed severe hyperglycemia after pancreatectomy that was corrected in Px-Tx group in 83% of rats 28 d after transplantation. Replication of transplanted beta cells increased in Tx-Px (1.15 +/- 0.12%) and Px-Tx (0.85 +/- 0.12%) groups, but not in Tx group (0.64 +/- 0.07%) compared with normal pancreatic beta cells (0.38 +/- 0.05%) (P < 0.001). Mean beta cell size increased in Tx-Px (311 +/- 14 microns2) and Px-Tx (328 +/- 13 microns2) groups compared with Tx (252 +/- 12 microns2) and normal (239 +/- 9 microns2) groups (P < 0.001). Transplanted beta cell mass increased in Tx-Px (1.87 +/- 0.51 mg) and Px-Tx (1.55 +/- 0.21 mg) groups compared with Tx group (0.78 +/- 0.17 mg) (P < 0.05). In summary, changes in transplanted beta cells prevented the development of hyperglycemia in Tx-Px rats. Transplanted beta cells responded to increased metabolic demand increasing their beta cell mass.
Resumo:
OBJECTIVE: To study the relationship between the energy expenditure for activity (EEAct), the level of activity and adiposity in a group of 9-year-old boys (n = 28) with different body composition (body weight, 38 +/- 10 kg [range, 23 to 66 kg]; fat mass, 23% +/- 10% [range, 8% to 42%]). METHODS: Total energy expenditure (TEE) was measured by means of the heart-rate monitoring method. EEAct was calculated as TEE-(REE+0.1 TEE), where REE is the postabsorptive resting energy expenditure and 0.1 TEE corresponds to the postprandial thermogenesis (approximately 10% of TEE). RESULTS: TEE, REE, and EEAct were 9388 +/- 1859, 5154 +/- 642, and 3295 +/- 1356 l J/day, respectively. Daily time devoted to sedentary and nonsedentary activities averaged 290 +/- 155 minutes (range, 69 to 621) and 534 +/- 150 minutes (range, 180 to 783), respectively. Time spent on sedentary activities was directly proportional to fat mass percentage (r = 0.46; p < 0.05). It was the only variable, among the free-living physical-activity [EEAct, TEE/(REE+0.1 TEE) ratio, time spent in nonsedentary and sedentary activities] variables, which remained significantly in the multiple step-down regression analysis final equation (r = 0.46; p < 0.05). CONCLUSIONS: The positive relationship between adiposity and time spent on sedentary activities in 9-year-old boys suggests the importance of the role played by muscular activity, at least in the maintenance of obesity in childhood. Prepubertal children should be encouraged to spend less time on sedentary activities to treat and prevent their obesity.
Resumo:
betaTC-tet cells are conditionally immortalized pancreatic beta cells which can confer long-term correction of hyperglycemia when transplanted in syngeneic streptozocin diabetic mice. The use of these cells for control of type I diabetes in humans will require their encapsulation and transplantation in non-native sites where relative hypoxia and cytokines may threaten their survival. In this study we genetically engineered betaTC-tet cells with the anti-apoptotic gene Bcl-2 using new lentiviral vectors and showed that it protected this cell line against apoptosis induced by hypoxia, staurosporine and a mixture of cytokines (IL-1beta, IFN-gamma and TNF-alpha). We further demonstrated that Bcl-2 expression permitted growth at higher cell density and with shorter doubling time. Expression of Bcl-2, however, did not inter- fere either with the intrinsic mechanism of growth arrest present in the betaTC-tet cells or with their normal glucose dose-dependent insulin secretory activity. Furthermore, Bcl-2 expressing betaTC-tet cells retained their capacity to secrete insulin under mild hypoxia. Finally, transplantation of these cells under the kidney capsule of streptozocin diabetic C3H mice corrected hyperglycemia for several months. These results demonstrate that the murine betaTC-tet cell line can be genetically modified to improve its resistance against different stress-induced apoptosis while preserving its normal physiological function. These modified cells represent an improved source for cell transplantation therapy of type I diabetes.
Resumo:
OBJECTIVE: Our laboratory has previously established in vitro that a caspase-generated RasGAP NH(2)-terminal moiety, called fragment N, potently protects cells, including insulinomas, from apoptotic stress. We aimed to determine whether fragment N can increase the resistance of pancreatic beta-cells in a physiological setting. RESEARCH DESIGN AND METHODS: A mouse line, called rat insulin promoter (RIP)-N, was generated that bears a transgene containing the rat insulin promoter followed by the cDNA-encoding fragment N. The histology, functionality, and resistance to stress of RIP-N islets were then assessed. RESULTS: Pancreatic beta-cells of RIP-N mice express fragment N, activate Akt, and block nuclear factor kappaB activity without affecting islet cell proliferation or the morphology and cellular composition of islets. Intraperitoneal glucose tolerance tests revealed that RIP-N mice control their glycemia similarly as wild-type mice throughout their lifespan. Moreover, islets isolated from RIP-N mice showed normal glucose-induced insulin secretory capacities. They, however, displayed increased resistance to apoptosis induced by a series of stresses including inflammatory cytokines, fatty acids, and hyperglycemia. RIP-N mice were also protected from multiple low-dose streptozotocin-induced diabetes, and this was associated with reduced in vivo beta-cell apoptosis. CONCLUSIONS: Fragment N efficiently increases the overall resistance of beta-cells to noxious stimuli without interfering with the physiological functions of the cells. Fragment N and the pathway it regulates represent, therefore, a potential target for the development of antidiabetes tools.
Resumo:
In the pathogenesis of type 2 diabetes, hyperglycemia appears when ß cell mass and insulin secretory capacity are no longer sufficient to compensate for insulin resistance. The reduction in ß cell mass results from increased apoptosis. Therefore, finding strategies to preserve ß cell mass and function may be useful for the treatment or prevention of diabetes. Glucagon-like peptide-1 (GLP-1) protects ß cells against apoptosis, increases their glucose competence, and induces their proliferation. Previous studies in the lab of Prof. Bernard Thorens showed that the GLP-1 anti- apoptotic effect was mediated by robust up-regulation of IGF-1R expression, and this was paralleled with an increase in Akt phosphorylation. This effect was dependent not only on increased IGF-1R expression but also on the autocrine secretion of insulin-like growth factor 2 (IGF2). They also demonstrated that GLP-1 up-regulated IGF-1R expression by a protein a kinase A-dependent translational control mechanism. The main aim of this PhD work has been to further investigate the role of the IGF2/IGF-1 Receptor autocrine loop in ß cell function and to determine the physiological role of IGF2 in ß cell plasticity and its regulation by nutrients. This PhD thesis is divided in 3 chapters. The first chapter describes the role of IGF2/IGF-1R autocrine loop in ß cell glucose competence and proliferation. Here using MIN6 cells and primary mouse islets as an experimental model we demonstrated that the glucose competence of these cells was dependent on the level of IGF-1R expression and on IGF2 secretion. Furthermore, we showed that GLP-1-induced primary ß cell proliferation was significantly reduced by Igf-lr gene inactivation and by IGF2 immunoneutralization or knockdown. In the second chapter we examined the role of this IGF2/IGF-1R autocrine loop on the ß cell functional plasticity during ageing, pregnancy, and in response to acute induction of insulin resistance using mice with ß cell-specific inactivation of ig/2. Here we showed a gender-dependent role of ß cell IGF2 in ageing and high fat diet-induced metabolic stress; we demonstrated that the autocrine secretion of IGF2 is essential for ß cell mass adaptation during pregnancy. Further we also showed that this autocrine loop plays an important role in ß cell expansion in response to acute induction of insulin resistance. The aim of the third chapter was to investigate whether we can modulate the expression and secretion of IGF2 by nutrients in order to increase the activity of autocrine loop. Here we showed that glutamine induces IGF2 biosynthesis and its fast secretion through the regulated pathway, a mechanism enhanced in the presence of glucose. Furthermore, we demonstrated that glutamine-mediated Akt phosphorylation is dependent on IGF2 secretion, indicating that glutamine controls the activity of the IGF2/IGF1R autocrine loop through IGF2 up-regulation. In summary, this PhD work highlights that autocrine secretion of IGF2 is required for compensatory ß cell adaptation to ageing, pregnancy, and insulin resistance. Moreover IGF2/IGF1R autocrine loop is regulated by two feeding-related cues, GLP-1 to increase IGF-1R expression and glutamine to control IGF2 biosynthesis and secretion. -- Dans le diabète de type 2, lorsque la sécrétion d'insuline des cellules Beta du pancréas n'est plus suffisante pour compenser la résistance à l'insuline, une hyperglycémie est observée. Cette baisse de sécrétion d'insuline est Causée par la diminution de la masse de cellules Beta suite à l'augmentation du phénomène de mort cellulaire ou « apoptose ». En diabétologie, une des stratégies médicales concerne la préservation des cellules Beta du pancréas. Une des protéines intervenant dans cette fonction est GLP-1 (Glucagon-like peptide-1). GLP-1 est capable de protéger les cellules Beta contre la mort cellulaire et d'induire leur prolifération. Des études précédemment menées dans le laboratoire du Professeur Bernard Thorens ont montrées que l'activité « anti-apoptotique » de GLP-1 est le résultat l'une augmentation de l'expression du gène IGF-1R sous la dépendance de la sécrétion autocrine d'IGF2 (Insulin-Like Growth Factor). Le but de mon travail de thèse aura été d'étudier le mécanisme de la régulation de GLP-1 par IGF2 et plus précisément de déterminer le rôle physiologique d'IGF2 dans la plasticité des cellules ß ainsi que sa régulation par les nutriments. Ce manuscrit est ainsi divisé en trois chapitres : Le premier chapitre décrit la fonction d'IGF2/IGF- R1 dans la réponse des cellules Beta au glucose ainsi que dans leur capacité à proliférer. Dans ce chapitre nous avons montré l'importance du niveau d'expression d'IGFR-1 et de la sécrétion d'IGF2 dans la régulation du métabolisme du glucose. Dans un deuxième chapitre, nous étudions la boucle de régulation IGF2/IGF-R1 sur la plasticité des cellules Beta lors du vieillissement, de la grossesse ainsi que dans un modèle de souris résistantes à l'insuline. Cette étude met en évidence un dimorphisme sexuel dans le rôle d'IGF2 lors du vieillissement et lors d'un stress métabolique. Nous montrons également l'importance d'IGF2 pour l'adaptation des cellules Beta tout au long de la grossesse ou lors du phénomène de résistance à l'insuline. Dans un troisième chapitre, nous mettons en évidence la possibilité de moduler l'expression et la sécrétion d'IGF2 par les nutriments. En conclusion, ce travail de thèse aura permis de mettre en évidence l'importance d'IGF2 dans la plasticité des cellules ß, une plasticité indispensable lors du vieillissement, de la grossesse ou encore dans le cas d'une résistance à l'insuline.
Resumo:
Hepatic and extrahepatic insulin sensitivity was assessed in six healthy humans from the insulin infusion required to maintain an 8 mmol/l glucose concentration during hyperglycemic pancreatic clamp with or without infusion of 16.7 micromol. kg(-1). min(-1) fructose. Glucose rate of disappearance (GR(d)), net endogenous glucose production (NEGP), total glucose output (TGO), and glucose cycling (GC) were measured with [6,6-(2)H(2)]- and [2-(2)H(1)]glucose. Hepatic glycogen synthesis was estimated from uridine diphosphoglucose (UDPG) kinetics as assessed with [1-(13)C]galactose and acetaminophen. Fructose infusion increased insulin requirements 2.3-fold to maintain blood glucose. Fructose infusion doubled UDPG turnover, but there was no effect on TGO, GC, NEGP, or GR(d) under hyperglycemic pancreatic clamp protocol conditions. When insulin concentrations were matched during a second hyperglycemic pancreatic clamp protocol, fructose administration was associated with an 11.1 micromol. kg(-1). min(-1) increase in TGO, a 7.8 micromol. kg(-1). min(-1) increase in NEGP, a 2.2 micromol. kg(-1). min(-1) increase in GC, and a 7.2 micromol. kg(-1). min(-1) decrease in GR(d) (P < 0. 05). These results indicate that fructose infusion induces hepatic and extrahepatic insulin resistance in humans.
Resumo:
OBJECTIVE: To compare the effects of sodium bicarbonate and lactate for continuous veno-venous hemodiafiltration (CVVHDF) in critically ill patients. DESIGN AND SETTINGS: Prospective crossed-over controlled trial in the surgical and medical ICUs of a university hospital. PATIENTS: Eight patients with multiple organ dysfunction syndrome (MODS) requiring CVVHDF. INTERVENTION: Each patient received the two buffers in a randomized sequence over two consecutive days. MEASUREMENTS AND RESULTS: The following variables were determined: acid-base parameters, lactate production and utilization ((13)C lactate infusion), glucose turnover (6,6(2)H(2)-glucose), gas exchange (indirect calorimetry). No side effect was observed during lactate administration. Baseline arterial acid-base variables were equal with the two buffers. Arterial lactate (2.9 versus 1.5 mmol/l), glycemia (+18%) and glucose turnover (+23%) were higher in the lactate period. Bicarbonate and glucose losses in CVVHDF were substantial, but not lactate elimination. Infusing (13)C lactate increased plasma lactate levels equally with the two buffers. Lactate clearance (7.8+/-0.8 vs 7.5+/-0.8 ml/kg per min in the bicarbonate and lactate periods) and endogenous production rates (14.0+/-2.6 vs 13.6+/-2.6 mmol/kg per min) were similar. (13)C lactate was used as a metabolic substrate, as shown by (13)CO(2) excretion. Glycemia and metabolic rate increased significantly and similarly during the two periods during lactate infusion. CONCLUSION: Lactate was rapidly cleared from the blood of critically ill patients without acute liver failure requiring CVVHDF, being transformed into glucose or oxidized. Lactate did not exert undesirable effects, except moderate hyperglycemia, and achieved comparable effects on acid-base balance to bicarbonate.
Resumo:
The major processes discussed below are protein turnover (degradation and synthesis), degradation into urea, or conversion into glucose (gluconeogenesis, Figure 1). Daily protein turnover is a dynamic process characterized by a double flux of amino acids: the amino acids released by endogenous (body) protein breakdown can be reutilized and reconverted to protein synthesis, with very little loss. Daily rates of protein turnover in humans (300 to 400 g per day) are largely in excess of the level of protein intake (50 to 80 g per day). A fast growing rate, as in premature babies or in children recovering from malnutrition, leads to a high protein turnover rate and a high protein and energy requirement. Protein metabolism (synthesis and breakdown) is an energy-requiring process, dependent upon endogenous ATP supply. The contribution made by whole-body protein turnover to the resting metabolic rate is important: it represents about 20 % in adults and more in growing children. Metabolism of proteins cannot be disconnected from that of energy since energy balance influences net protein utilization, and since protein intake has an important effect on postprandial thermogenesis - more important than that of fats or carbohydrates. The metabolic need for amino acids is essentially to maintain stores of endogenous tissue proteins within an appropriate range, allowing protein homeostasis to be maintained. Thanks to a dynamic, free amino acid pool, this demand for amino acids can be continuously supplied. The size of the free amino acid pool remains limited and is regulated within narrow limits. The supply of amino acids to cover physiological needs can be derived from 3 sources: 1. Exogenous proteins that release amino acids after digestion and absorption 2. Tissue protein breakdown during protein turnover 3. De novo synthesis, including amino acids (as well as ammonia) derived from the process of urea salvage, following hydrolysis and microflora metabolism in the hind gut. When protein intake surpasses the physiological needs of amino acids, the excess amino acids are disposed of by three major processes: 1. Increased oxidation, with terminal end products such as CO₂ and ammonia 2. Enhanced ureagenesis i. e. synthesis of urea linked to protein oxidation eliminates the nitrogen radical 3. Gluconeogenesis, i. e. de novo synthesis of glucose. Most of the amino groups of the excess amino acids are converted into urea through the urea cycle, whereas their carbon skeletons are transformed into other intermediates, mostly glucose. This is one of the mechanisms, essential for life, developed by the body to maintain blood glucose within a narrow range, (i. e. glucose homeostasis). It includes the process of gluconeogenesis, i. e. de novo synthesis of glucose from non-glycogenic precursors; in particular certain specific amino acids (for example, alanine), as well as glycerol (derived from fat breakdown) and lactate (derived from muscles). The gluconeogenetic pathway progressively takes over when the supply of glucose from exogenous or endogenous sources (glycogenolysis) becomes insufficient. This process becomes vital during periods of metabolic stress, such as starvation.
Resumo:
Fifty years after the clinical introduction of total parenteral nutrition (TPN) the Arvid Wretlind lecture is an opportunity to critically analyse the evolution and changes that have marked its development and clinical use. The standard crystalline amino acid solutions, while devoid of side effects, remain incomplete regarding their composition (e.g. glutamine). Lipid emulsions have evolved tremendously and are now included in bi- and tri-compartmental feeding bags enabling a true "total" PN provided daily micronutrients are prescribed. The question of exact individual energy, macro- and micro-nutrient requirements is still unsolved. Many complications attributed to TPN are in fact the consequence of under- or over-feeding: the historical hyperalimentation concept is the main cause, along with the use of fixed weight based predictive equations (incorrect in 70% of the critically ill patients). In the late 80's many complications (hyperglycemia, sepsis, fatty liver, exacerbation of inflammation, mortality) were attributed to TPN leading to its near abandon in favour of enteral nutrition (EN). Enteral feeding, although desirable for many reasons, is difficult causing a worldwide recurrence of malnutrition by insufficient feed delivery. TPN indications have evolved towards its use either alone or in combination with EN: several controversial trials published 2011-13 have investigated TPN timing, an issue which is not yet resolved. The initiation time varies according to the country between admission (Australia and Israel), day 4 (Swiss) and day 7 (Belgium, USA). The most important issue may prove to be and individualized and time dependent prescription of feeding route, energy and substrates.
Resumo:
Either 200 or 400 syngeneic islets were transplanted under the kidney capsule of normal or streptozocin-induced diabetic B6/AF1 mice. The diabetic mice with 400 islets became normoglycemic, but those with 200 islets, an insufficient number, were still diabetic after the transplantation (Tx). Two weeks after Tx, GLUT2 expression in the islet grafts was evaluated by immunofluorescence and Western blots, and graft function was examined by perfusion of the graft-bearing kidney. Immunofluorescence for GLUT2 was dramatically reduced in the beta-cells of grafts with 200 islets exposed to hyperglycemia. However, it was plentiful in grafts with 400 islets in a normoglycemic environment. Densitometric analysis of Western blots on graft homogenates demonstrated that GLUT2 protein levels in the islets, when exposed to chronic hyperglycemia for 2 weeks, were decreased to 16% of those of normal recipients. Moreover, these grafts had defective glucose-induced insulin secretion, while the effects of arginine were preserved. We conclude that GLUT2 expression in normal beta-cells is promptly down-regulated during exposure to hyperglycemia and may contribute to the loss of glucose-induced secretion of diabetes.
Resumo:
Among 645 obese patients examined at an out-patient clinic for obese patients by physical examination and a computerized questionnaire, two subgroups of patients could be identified according to their nutritional preferences: 177 patients preferred carbohydrates exclusively (group A) and 73 patients fat exclusively (group B). No definite preferences were formulated by the other patients. Among patients under 25 years, only 3 belonged to group B and 49 to group A, while in older patients no significant differences were found. Among patients with BMI less than 30, there were significantly fewer patients from group B than from group A (p = 0.006), while in patients with BMI greater than 30 no significant difference was observed. There were significantly more men in group B than in group A. 57% of the patients of group B complained of physical symptoms related to their obesity, compared to 37% in group A (p = 0.006). 26% of group B suffered from joints and muscles compared to 13% of group A (p = 0.003). Hyperglycemia (greater than 5,6 mmol/l) was found in 21% of group A and in 40% of group B (p less than 0.005). Hypercholesterolemia (greater than 6.5 mmol/l) was found in 20% of group A and in 32% of group B (p less than 0.05). In conclusion, obese patients who prefer fat have more general symptoms related to obesity, more abnormal physical signs, and more frequently have hyperglycemia and hypercholesterolemia than patients who prefer carbohydrates.