953 resultados para Population dynamics
Resumo:
The introduction of culture-independent molecular screening techniques, especially based on 16S rRNA gene sequences, has allowed microbiologists to examine a facet of microbial diversity not necessarily reflected by the results of culturing studies. The bacterial community structure was studied for a pesticide-contaminated site that was subsequently remediated using an efficient degradative strain Arthrobacter protophormiae RKJ100. The efficiency of the bioremediation process was assessed by monitoring the depletion of the pollutant, and the effect of addition of an exogenous strain on the existing soil community structure was determined using molecular techniques. The 16S rRNA gene pool amplified from the soil metagenome was cloned and restriction fragment length polymorphism studies revealed 46 different phylotypes on the basis of similar banding patterns. Sequencing of representative clones of each phylotype showed that the community structure of the pesticide-contaminated soil was mainly constituted by Proteobacteria and Actinomycetes. Terminal restriction fragment length polymorphism analysis showed only nonsignificant changes in community structure during the process of bioremediation. Immobilized cells of strain RKJ100 enhanced pollutant degradation but seemed to have no detectable effects on the existing bacterial community structure.
Resumo:
Considering the possibility of introduction of schistosomiasis mansoni into Argentina as a consequence of dam construction on the Rio De La Plata basin, preliminary studies have been carried out on agrosystems such as ricefields in Corrientes province with the following purposes: 1) to survey and estimate the relative abundance of planorbids and identify potential vector species; 2) to identify environmental factors capable of influencing Biomphalaria population dynamics; and 3) to find out snail-parasite associations and estimate snail infection rates in order to detect possible competitive interactions between larval stages of native trematodes that could be used in biological control of Schistosoma mansoni. Three potential schistosome vectors were detected in ricefields, namely Biomphalaria straminea, B. tenagophila and B. peregrina, although B. orbignyi, a species refractory to infection with S. mansoni, proved the most frequent and abundant. Positive correlations (P<0.05) were found between Biomphalaria abundance and some environmental parameters: conductivity, hardness, calcium, nitrites plus nitrates, ammonium and bicarbonates. Water temperature correlation was negative (P<0.05). No correlation (P>0.05) was found in total iron, phosphates (SRP), pH and soil granulometry. Echinocercariae developed from rediae and belonging to Petasiger sp., Paryphostomum sp., and other undetermined species were found.
Resumo:
Soil pseudomonads increase their competitiveness by producing toxic secondary metabolites, which inhibit competitors and repel predators. Toxin production is regulated by cell-cell signalling and efficiently protects the bacterial population. However, cell communication is unstable, and natural populations often contain signal blind mutants displaying an altered phenotype defective in exoproduct synthesis. Such mutants are weak competitors, and we hypothesized that their fitness depends on natural communities on the exoproducts of wild-type bacteria, especially defence toxins. We established mixed populations of wild-type and signal blind, non-toxic gacS-deficient mutants of Pseudomonas fluorescens CHA0 in batch and rhizosphere systems. Bacteria were grazed by representatives of the most important bacterial predators in soil, nematodes (Caenorhabditis elegans) and protozoa (Acanthamoeba castellanii). The gacS mutants showed a negative frequency-dependent fitness and could reach up to one-third of the population, suggesting that they rely on the exoproducts of the wild-type bacteria. Both predators preferentially consumed the mutant strain, but populations with a low mutant load were resistant to predation, allowing the mutant to remain competitive at low relative density. The results suggest that signal blind Pseudomonas increase their fitness by exploiting the toxins produced by wild-type bacteria, and that predation promotes the production of bacterial defence compounds by selectively eliminating non-toxic mutants. Therefore, predators not only regulate population dynamics of soil bacteria but also structure the genetic and phenotypic constitution of bacterial communities.
Resumo:
After a study of the population dynamics of Biomphalaria glabrata snails in several breeding places in the Dominican Republic, the snail Thiara granifera was introduced in some B. glabrata habitats. T. granifera became established in one point in one habitat in the townof Quisqueya, in the east of the country. Around this point of establishment 6 points were selected in order to observe the population dynamics of both species of snails and the chemical and biological characteristics at each point. Four of these points already harbored B. glabrata. One control point was selected also harboring B. glabrata. After 14 months of observations, the results showed that T. granifera was competing with and displacing B. glabrata. This competition does not seem to be competition for food or vital space. Rather, B. glabrata avoids the presence of T. granifera and moves away to new areas, and this is possibly due to a chemical substance(s) secreted by T. granifera or by physical contact with the large number of individuals of T. granifera.
Resumo:
Recent developments in metacommunity theory have raised awareness that processes occurring at regional scales might interfere with local dynamics and affect conditions for the local coexistence of competing species. Four main paradigms are recognized in this context (namely, neutral, patch-dynamics, species-sorting, and mass-effect), which differ according to the role assigned to ecological or life-history differences among competing species, as well as to the relative time scale of regional vs. local dynamics. We investigated the patterns of regional and local coexistence of two species of shrews (Crocidura russula and Sorex coronatus) sharing a similar diet (generalist insectivores) over four generations, in a spatially structured habitat at the altitudinal limit of their distributions. Local populations were small, and regional dynamics were strong, with high rates of extinction and recolonization. Niche analysis revealed significant habitat differentiation on a few important variables, including temperature and availability of winter resting sites. In sites suitable for both species, we found instances of local coexistence with no evidence of competitive exclusion. Patterns of temporal succession did not differ from random, with no suggestion of a colonization-competition trade-off. Altogether, our data provide support for the mass-effect paradigm, where regional coexistence is mediated by specialization on different habitat types, and local coexistence by rescue effects from source sites. The strong regional dynamics and demographic stochasticity, together with high dispersal rates, presumably contributed to mass effects by overriding local differences in specific competitive abilities.
Resumo:
A population dynamics study of D. maximus was caried out under laboratory condictions (28-C e 65% ñ 5% U.R.) and the methodology was the same that have been used for hearing this insects. In order to evaluate the population growth rate of this species, during a 24 months period, five colonies started with a couple recently emerged were observed. Each couple (a male and a female) was mantained in a glass container measuring 20 cm of diameter and 20 cm in height with filter paper on the botton. The insects were monthly feeding with normal mice blood, and at this day the number of eggs, nymphal stages and adults was registered. All graphical representations of the populations growth rate showed the same shape. It was found that the average of nymphal stage represented 64.31% of the hole population whereas the oviposition curved showed to be inverse to this one (28.57%) a small percentage of adults was found: males 3.85% and females 3.12%. In this study observations on the biologycal cycle, longevity and fertility rates were also carried out.
Resumo:
Measuring the intensity of sexual selection is of fundamental importance to the study of sexual dimorphism, population dynamics, and speciation. Several indices, pools of individuals, and fitness proxies are used in the literature, yet their relative performances are strongly debated. Using 12 independent common lizard populations, we manipulated the adult sex ratio, a potentially important determinant of the intensity of sexual selection at a particular time and place. We investigated differences in the intensity of sexual selection, as estimated using three standard indices of sexual selection-the standardized selection gradient (β'), the opportunity of selection (I), and the Bateman gradient (βss)--calculated for different pools of individuals and different fitness proxies. We show that results based on estimates of I were the opposite of those derived from the other indices, whereas results based on estimates of β' were consistent with predictions derived from knowledge about the species' mating system. In addition, our estimates of the strength and direction of sexual selection depended on both the fitness proxy used and the pool of individuals included in the analysis. These observations demonstrate inconsistencies in distinct measures of sexual selection and underscore the need for caution when comparing studies and species.
Resumo:
The resurgence of malaria in the Americas has renewed interest in Anopheles biology. Anopheles darlingi, An. albimanus, An. nuneztovai and An aquasalis are reconfirmed as major malaria vectors and other species are playing important roles in regional malaria transmission. Adultbiting activity and larval ecology are discussed in detail. Seasonal abundance and daily biting activity of Anopheles vary considerably among species and geographically for the same species. Anopheles albimanus has the least amount of variation in biting activity over its range and An. darlingi has the greatest. All species studied are more exophilic and exophagic than endophilic and endophagic. Anopheles darling is more antropophilic, endophilic and endophagic than other Anophelines. Larval studies remain more descriptive than comprehensive. Research on Anophelines is becoming more integrated and biologists are using new biochemical techniques and ecological principles to answer critical questions. This "pluralization" will help us understand species complexes, population dynamics and malaria transmission. integrated control programs will require more regional, in-depth ecological studies.
Resumo:
Reticulitermes santonensis is a subterranean termite that invades urban areas in France and elsewhere where it causes damage to human-built structures. We investigated the breeding system, colony and population genetic structure, and mode of dispersal of two French populations of R. santonensis. Termite workers were sampled from 43 and 31 collection points, respectively, from a natural population in west-central France (in and around the island of Oleron) and an urban population (Paris). Ten to 20 workers per collection point were genotyped at nine variable microsatellite loci to determine colony identity and to infer colony breeding structure. There was a total of 26 colonies, some of which were spatially expansive, extending up to 320 linear metres. Altogether, the analysis of genotype distribution, F-statistics and relatedness coefficients suggested that all colonies were extended families headed by numerous neotenics (nonwinged precocious reproductives) probably descended from pairs of primary (winged) reproductives. Isolation by distance among collection points within two large colonies from both populations suggested spatially separated reproductive centres with restricted movement of workers and neotenics. There was a moderate level of genetic differentiation (F(ST) = 0.10) between the Oleron and Paris populations, and the number of alleles was significantly higher in Oleron than in Paris, as expected if the Paris population went through bottlenecks when it was introduced from western France. We hypothesize that the diverse and flexible breeding systems found in subterranean termites pre-adapt them to invade new or marginal habitats. Considering that R. santonensis may be an introduced population of the North American species R. flavipes, a breeding system consisting primarily of extended family colonies containing many neotenic reproductives may facilitate human-mediated spread and establishment of R. santonensis in urban areas with harsh climates.
Resumo:
An indirect estimate of consumable food and probability of acquiring food in a blowfly species, Chrysomya putoria, is presented. This alternative procedure combines three distinct models to estimate consumable food in the context of the exploitative competition experienced by immature individuals in blowfly populations. The relevant parameters are derived from data for pupal weight and survival and estimates of density-independent larval mortality in twenty different larval densities. As part of this procedure, the probability of acquiring food per unit of time and the time taken to exhaust the food supply are also calculated. The procedure employed here may be valuable for estimations in insects whose immature stages develop inside the food substrate, where it is difficult to partial out confounding effects such as separation of faeces. This procedure also has the advantage of taking into account the population dynamics of immatures living under crowded conditions, which are particularly characteristic of blowflies and other insects as well.
Resumo:
A statistical evaluation of the population dynamics of Panstrongylus geniculatus is based on a cohort experiment conducted under controlled laboratory conditions. Animals were fed on hen every 15 days. Egg incubation took 21 days; mean duration of 1st, 2nd, 3rd, 4th, and 5th instar nymphs was 25, 30, 58, 62, and 67 days, respectively; mean nymphal development time was 39 weeks and adult longevity was 72 weeks. Females reproduced during 30 weeks, producing an average of 61.6 eggs for female on its lifetime; the average number of eggs/female/week was 2.1. Total number of eggs produced by the cohort was 1379. Average hatch for the cohort was 88.9%; it was not affected by age of the mother. Age specific survival and reproduction tables were constructed. The following population parameters were evaluated, generation time was 36.1 weeks; net reproduction rate was 89.4; intrinsic rate of natural increase was 0.125; instantaneous birth and death rates were 0.163 and 0.039 respectively; finite rate of increase was 1.13; total reproductive value was 1196 and stable age distribution was 31.2% eggs, 64.7% nymphs and 4.1% adults. Finally the population characteristics of P. geniculatus lead to the conclusion that this species is a K strategist.
Resumo:
In natural populations, dispersal tends to be limited so that individuals are in local competition with their neighbours. As a consequence, most behaviours tend to have a social component, e.g. they can be selfish, spiteful, cooperative or altruistic as usually considered in social evolutionary theory. How social behaviours translate into fitness costs and benefits depends considerably on life-history features, as well as on local demographic and ecological conditions. Over the last four decades, evolutionists have been able to explore many of the consequences of these factors for the evolution of social behaviours. In this paper, we first recall the main theoretical concepts required to understand social evolution. We then discuss how life history, demography and ecology promote or inhibit the evolution of helping behaviours, but the arguments developed for helping can be extended to essentially any social trait. The analysis suggests that, on a theoretical level, it is possible to contrast three critical benefit-to-cost ratios beyond which costly helping is selected for (three quantitative rules for the evolution of altruism). But comparison between theoretical results and empirical data has always been difficult in the literature, partly because of the perennial question of the scale at which relatedness should be measured under localized dispersal. We then provide three answers to this question.
Resumo:
The effects of the infection caused by the microsporidium Polydispyrenia simulii in gonads of the simuliid Simulium pertinax were evaluated. This blackfly species is the main target of control programmes in southeastern Brazil. Infected and noninfected blackflies were reared from larval stage to adults using a laboratory rearing system. There was no significant difference between the oogenic development and dimensions of ovarian follicles of healthy females compared to those reared from infected larvae. Otherwise, there was a significant difference between the fecundity of healthy females and those reared from infected larvae. In males, there was an evident reduction of motility of spermatozoids of males reared from infected larvae. The results obtained suggest that the microsporidium P. simulii have an important effect on the natural population dynamics of S. pertinax.
Resumo:
In this study we investigated the larval dispersal associated with larval predation in experimental populations of Chrysomya albiceps and Cochliomyia macellaria. Frequency distribution of sampling units (G test) in the substrate was used to evaluate variation in larval dispersal. An experimental acrylic channel (1 x 0.1 x 0.2 m) covered with wood shavings was used to observe larval dispersal prior to pupation. The acrylic channel was graduated at 0.05 m intervals, each representing a sampling unit; hence, 20 sampling units were set up. A Petri dish containing third instar larvae of single and double species was deposited at one edge of the acrylic channel allowing larvae to disperse. The number of buried pupae (0, 1, 2, n) present in each sampling unit was recorded. For double species, the number of recovered larvae of C. albiceps was similar to the number initially released on the dish Petri. On the other hand, the number of recovered larvae of C. macellaria was significantly smaller than the initially released number. The results show that C. albiceps attacks C. macellaria larvae during the larval dispersal process. The larval distribution of C. albiceps did not differ significantly from C. macellaria in double species, but it differed significantly in single species. The larval aggregation level of C. macellaria decreased when C. albiceps was present and the larval aggregation level of C. albiceps increased when C. macellaria was present. The implications of such findings for the population dynamics of these species are discussed.