927 resultados para Polyaniline and derivatives


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Four single polymers with two kinds of attachment of orange chromophore to blue polymer host for white electroluminescence (EL) were designed. The effect of the side-chain attachment and main-chain attachment on the EL efficiencies of the resulting polymers was compared. The side-chain-type single polymers are found to exhibit more efficient white EL than that of the main-chain-type single polymers. Based on the side-chain-type white single polymer with 4-(4-alkyloxy-phenyl)-7-(4-diphenylamino-phenyl)-2,1,3-benzothiadiazoles as the orange-dopant unit and polyfluorene as the blue polymer host, white EL with simultaneous orange (lambda(max) = 545 nm) and blue emission (lambda(max) = 432 nm/460 nm) is realised. A single-layer device (indium tin oxide/poly(3,4-ethylenedioxythiophene)/polymer/Ca/Al) made of these polymers emits white light with the Commission Internationale de l'Eclairage coordinates of (0.30,0.40), possesses a turn-on voltage of 3.5 V, luminous efficiency of 10.66 cd A(-1), power efficiency of 6.68 lm W-1, and a maximum brightness of 21240 cd m(-2).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Five zinc (II) complexes (1-5) with 4 '-phenyl-2,2 ':6 ',2 ''-terpyridine (ptpy) derivatives as ligands have been synthesized and fully characterized. The para-position of phenyl in ptpy is substituted by the group (R), i.e. tert-butyl (t-Bu), hexyloxy (OHex), carbazole-9-yl (Cz), naphthalen-1-yl-phenyl-amine-N-yl (NPA) and diphenyl amine-N-yl (DPA), with different electron-donating ability. With increasing donor ability of the R, the emission color of the complexes in film was modulated from violet (392 nm) to reddish orange (604 nm). The photoexcited luminescence exhibits significant solvatochromism because the emission of the complexes involves the intra-ligand charge transfer (ILCT) excited state. The electrochemical investigations show that the complexes with stronger electro-donating substituent have lower oxidation potential and then higher HOMO level. The electroluminescence (EL) properties of these zinc (II) complexes were studied with the device structure of ITO/PEDOT/Zn (II) complex: PBD:PMMA/BCP/AlQ/ LiF/Al. Complexes 3, 4 and 5 exhibit EL wavelength at 552, 600 and 609 nm with maximum current efficiency of 5.28, 2.83 and 2.00 cd/A, respectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article presents the state of the art of analytical applications of the electrochemiluminescence (ECL) of tris (2,2'-bipyridyl) ruthenium (Ru(bpy)(3)(2+)) and its derivatives. in the last seven years, Ru(bpy)(3)(2+) ECL has attracted much interest from analysts and been successfully exploited as a detector of flow injection analysis (FIA), high-performance liquid chromatography (HPLC), capillary electrophoresis (CE), and micro total analysis systems (TAS). Immobilization of Ru(bPY)(3)(2+) on a solid surface provides several advantages over the solution-phase ECL procedure, such as the simplicity of experimental design and cost-effectiveness. After a brief discussion of the mechanism of Ru(bpy)(3)(2+) ECL, we discuss its applications in FIA, HPLC, CE and TAS and give special attention to the design of Ru(bpy)(3)(2+) ECL cells and some immobilization techniques of Ru(bpy)(3)(2+); we focus on papers published after 1997.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In an attempt to increase the interface stability of carbon used in Li-ion batteries, a thin conducting polyaniline (PANI) film was fabricated on the surface of carbon by in situ chemical polymerization. The chemical and electrochemical properties of the composite material were characterized using X-ray diffraction, Raman spectroscopy, scanning electron microscope, cyclic voltammetry, and electrochemical impedance spectroscopy. It was confirmed that the PANI film has an obvious effect on the morphology and the electrochemical performance of carbon. The results could be attributed to the electronic and electrochemical activity of the conducting PANI films.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Triphenyl pyrazoline derivatives (TPPs) bearing electron withdrawing and pushing substitutents were synthesized. Their photoluminescence (PL) properties in the solution and doped in poly(N-vinylcarbazole) (PVK) thin films were investigated. When TPPs were doped into PVK films the photoluminescence intensity was enhanced with increasing TPPs concentration. It indicated that the energy transfer from PVK to TPPs has happened. Double and three-layer electroluminescence (EL) devices based on PVK doped with TPPs as an active layer were fabricated and investigated and the electroluminescent mechanism was followed by energy transfer from PVK to TPPs. The pyrazoline derivative with both electron withdrawing and pushing substituents was the optimistic candidate for electroluminescent emitter due to higher transfer efficiency from electric energy to light energy as well as larger luminance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Synergistic extraction of zinc(IT) and cadmium(11) from hydrochloric acid solution with primary amine N1923 and neutral organophosphorus derivatives Cyanex 923 and Cyanex 925 is the focus of this paper. Extraction mechanisms are discussed as well as how the acidity of the aqueous phase, the composition of the organic phase, and the experimental temperature affect the rates of extraction of metal ions. Differences between synergistic efficiency of Zn(II) and Cd(II) with mixtures of primary amines N1923 and either Cyanex 923 or Cyanex 925 are observed. The equilibrium constants, the composition, and the formation constants of the extracted complexes as well as the values of the thermodynamic functions are calculated. According to the synergy coefficient formula, the synergy effect on the extraction of Zn(II) is in the following order:N1923 + Cyanex 925 > N1923 + Cyanex 923 This order is reversed in the case of cadmium(II). For the same synergistic system, the extraction rate follows the order: Zn(II) > Cd(II). Furthermore, the stereochemical structures of the various extractants and their effect on metal ion extraction rate are also investigated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electrooxidation polymerization of phenothiazine derivatives, including azure A and toluidine blue 0, has been studied at screen-printed carbon electrodes in neutral phosphate buffer. Both compounds yield strongly adsorbed electroactive polymer with reversible behavior and formal potentials closed to 0.04 V at pH 6.9. The modified electrodes exhibited good stability and electrocatalysis for NADH oxidation in phosphate buffer (pH 6.9), with an overpotential of more than 500 mV lower than that of the bare electrodes. Further, the modified screen-printed carbon electrodes were found to be promising as an amperometric detector for the flow injection analysis (FIA) of NADH, typically with a dynamic range of 0.5-100 muM.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although polyaniline (PANI) has high conductivity and relatively good environmental and thermal stability and is easily synthesized, the intractability of this intrinsically conducting polymer with a melting procedure prevents extensive applications. This work was designed to process PANI with a melting blend method with current thermoplastic polymers. PANI in an emeraldine base form was plasticized and doped with dodecylbenzene sulfonic acid (DBSA) to prepare a conductive complex (PANI-DBSA). PANI-DBSA, low-density polyethylene (LDPE), and an ethylene/vinyl acetate copolymer (EVA) were blended in a twin-rotor mixer. The blending procedure was monitored, including the changes in the temperature, torque moment, and work. As expected, the conductivity of ternary PANI-DBSA/LDPE/EVA was higher by one order of magnitude than that of binary PANI-DBSA/LDPE, and this was attributed to the PANI-DBSA phase being preferentially located in the EVA phase. An investigation of the morphology of the polymer blends with high-resolution optical microscopy indicated that PANI-DBSA formed a conducting network at a high concentration of PANI-DBSA. The thermal and crystalline properties of the polymer blends were measured with differential scanning calorimetry. The mechanical properties were also measured.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One-dimensional gold/polyaniline (Au/PANI-CSA) coaxial nanocables with an average diameter of 5060 nm and lengths of more than 1 mu m were successfully synthesized by reacting aniline monomer with chlorauric acid (HAuCl4) through a self-assembly process in the presence Of D-camphor-10-sulfonic acid (CSA), which acts as both a dopant and surfactant. It was found that the formation probability and the size of the Au/PANI-CSA nanocables depends on the molar ratio of aniline to HAuCl4 and the concentration of CSA, respectively. A synergistic growth mechanism was proposed to interpret the formation of the Au/PANI-CSA nanocables. The directly measured conductivity of a single gold/polyaniline nanocable was found to be high (approximate to 77.2S cm(-1)). Hollow PANI-CSA nanotubes, with an average diameter of 50-60 nm, were also obtained successfully by dissolving the Au nanowire core of the Au/PANI-CSA nanocables.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fully sulfonated polyaniline nano-particles, nano-fibrils and nano-networks have been achieved for the first time by electrochemical homopolymerization of orthanilic acid using a three-step electrochemical deposition procedure in a mixed solvent of acetonitrile (ACN) and water. The diameter of the uniform nano-particles is about 60nm, and the nano-fibrils can be organized in two-dimensional (21)) or three-dimensional (313) non-periodic networks with good electrical contact. Average distance between contacts is about 850 and 600 nm for a 2D and 3D system, respectively. The details of the poly(orthanilic acid) (POA) nano-structure were examined with a field emission scanning electron microscope (SEM). The structure and properties of POA were characterized with FTIR, UV-vis and electrochemical methods. The 3D POA nano-networks coated platinum electrode gave a direct electrochemical behavior of horse heart cytochrome c (Cyt c) immobilized on this electrode surface, a pair of well-defined redox waves with formal potential (E-ol) of -0.032 V (versus Ag/AgCl) was achieved. The interaction between Cyt c and POA makes the formal potential shift negatively compared to that of Cyt c in solution. Spectrophotometric and electrochemical methods were used to investigate the interaction of Cyt c with POA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

2,7-Bis(9-ethylcarbazol-3-yl)-9,9-di(2-ethylhexyl)fluorene and a segmented copolymer composed of the same chromophores alternated with hexamethylene fragments were synthesized. The obtained materials possess good solubility in common organic solvents, high thermal stability with 1% weight loss temperature of 350-370 degrees C, and suitable glass transition temperatures. Both derivatives show blue fluorescence in dilute solutions as well as in solid state, demonstrating that excimers are not formed in the thin films. The fluorescence spectra of the materials do not show any peaks in the long-wavelength region even after annealing at 200 degrees C in air. An organic LED with the configuration of ITO/copolymer/Al generates blue electroluminescence with the maximum peak at 416 nm, rather low turn-on voltage (4.0 V), and brightness of about 400 cd/m(2). The heterostructure device based on model derivative emitted stable blue light with low operation voltage (100 cd/m(2) at similar to 11 V) and demonstrated luminescence efficiency of 0.8 cd/A.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mercaptoethane sulfonate protected, water-soluble gold and silver nanoparticles (Au-MES and Ag-MES) are synthesized by one-phase method and characterized by TEM, TGA and XPS techniques, UV-vis and FTIR spectra. Both Au-MES and Ag-MES nanoparticles are soluble in the water up to 2.0 mg/ml and the stability of AU-MES is much better than that of Ag-MES. When dissolved in the water. they behave like a polyanion and can be used to build multilayer films with polyaniline (PANI) by way of layer-by-layer. A new approach is presented to fabricate the Multilayer films of Au-MES/PANI and Ag-MES/PAN]. The assembly mechanism of these multilayer films is also discussed. We anticipate highly conducting PANI films can be obtained by doping with these nanoparticles.