956 resultados para Pollution of water
Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template
Resumo:
We report a new approach for the synthesis of fluorescent and water-soluble Ag nanoclusters, using the common polyelectrolyte poly(methacrylic acid) as the template.
Resumo:
Single-crystal tubular products on the millimetre scale have been synthesized from water-soluble calixarene and phenanthroline in the presence of lanthanides by a hydrothermal method, in which the extended structures contain some 1D infinite channels.
Resumo:
Five new compounds of sulfonylcalix[4]arenetetrasulfonate (SC4AS), [H7Na(H2O)(3)(SC4AS)(phen)(5)](H2O)(11.9) (1), [H6Mn(H2O)(4)(SC4AS)(phen)(5)] (H2O)(12.7) (2), [Cu-4(SC4AS) (phen)(6)] (H2O)(4.5) (3), {[Cu (2)(SC4AS) (bpy)(2)][Cu(bpy)(2)(H2O)](2)} (H2O)(6.6) (4), and {[Zn-2(SC4AS) (phen)(2)][Zn(phen)(2)(H2O)(2)](2)} (H2O)(7) (5) (where phen 1,10-phenanthroline and bpy = 2,2'-bipyridine), were synthesized by a hydrothermal method and structurally determined by single crystal X-ray diffraction. The SC4AS ligand adopts partial cone conformation in compounds 1 and 2 and 1,2-alternate form in compounds 3-5. According to the structural analysis and density functional theory (DFT) calculations, we suggest that the metal can affect the conformation of SC4AS.
Resumo:
A novel sulfonated tetraamine, di(triethylammonium)-4,4'-bis(3,4-diaminophenoxy)biphenyl-3,3'-disulfonate (BAPBDS), was successfully synthesized by nucleophilic aromatic substitution of 4,4'-dihydroxybiphenyl with 5-chloro-2-nitroaniline, followed by sulfonation and reduction. A high-temperature polycondensation of sulfonated tetraamine, non-sulfonated tetraamine (4,4 -bis(3,4-aminophenoxy)biphenyl) and 1,4,5,8-naphthalenetetracarboxylic dianhydride (a) or 4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianydride (b) gave the poly[bis(benzimidazobenzisoquinolinones)] ionomers SPBIBI-a(x) or SPBIBI-b(x), where x refers to the molar percentage of the sulfonated tetraamine monomer. Flexible and tough membranes of high mechanical strength were obtained by solution casting and the electrolyte properties of the polymers were intensively investigated. The ionomer membranes displayed excellent dimensional and hydrolytic stabilities.
Resumo:
In this paper, we prepared "dual-parallel-channel" shape-gradient surfaces, on which water droplets can reversibly and orientedly move between two adjacent pools under the guidance of an external voltage. Furthermore, it is found that the motion speed is governed by several parameters, including bath condition, gradient angle, and the working voltage. In this self-transportation process of water droplets, the external voltage works like a traffic light, which can give "moving", "stopping", "turning" and "straight-going" signals to the Water droplets.
Resumo:
In this work, the absorption spectral characteristics and color-change reaction mechanism of cobalt(II) chloride(COCl2) in alcohol organic solvents has been investigated in the presence of water, and then the optimum conditions for determining the water content in the solvents were selected. Results indicated that the absorption spectra Of COCl2 in alcohols decreased with the increment of water content. At the maximum absorption wavelength of 656 nm, there were good linear relationships between the logarithm of the absorbance and the water content in organic solvents such as ethanol, n-propanol, iso-propanol and n-butanol with related coefficients in the range of 0.9996 similar to 0.9998. For determining water content in organic solvents, this method is simple, rapid, sensitive, reproducible and environmentally friendly. Furthermore, the linear range cannot restrict determination of the water content in organic solvents. This method had been applied to determine the water content in ethanol and n-butanol with satisfactory recovery of water in n-butanol between 98.41%-101.29%.
Resumo:
Lamellar platelets of triblock copolymers grown in dilute toluene solution with trace amounts of water can be used as templates for tethered diblock copolymer chain preparation and analysis. Polystyrene-bpoly(2-vinylpyridine)-b-poly(ethylene oxide) (PS-b-P2VP-b-PEO) with two different block fractions were used as model templates to generate tethered P2VP-b-PS chains on the platelet basal surfaces. In toluene solution the aggregation states of PS-b-P2VP-b-PEO were sensitive to the water content in the solution. For toluene with trace amount of water, spherical micelles were formed in the early stage and large square platelets would gradually grow from these spherical micelles. The hydrogen bonding between water and EO units was responsible for the formation of micelles and subsequent square platelets in the solution. Tethered P2VP-b-PS chains on basal surface of PEO platelets could be regarded as diblock copolymer brushes and the density (or: 0.086-0.36) and height (d: 3.5-14.3 nm) of these tethered chains could be easily modulated by changing the crystallization condition and/ or the molecular weight of each block. The tethered P2VP-b-PS chains were responsive to different solvent vapor.
Resumo:
ZnO nanowires, nanorods and nanoparticles through modulating the ratio of water to methanol have been synthesized by using a mild and simple solution method. The as-prepared ZnO nanostructures have been characterized by atomic force microscopy and X-ray photoelectron spectroscopy. With the increase of the ratio of water to methanol, the morphology of ZnO nanostructures varied form denser nanowires, to sparse nanowires, to nanorods, and then to nanoparticles. The ratio of water to methanol is supposed to play an important role in the formation of ZnO nanostructures. The mechanism of formation is related to the chemical potential, which is simply proportional to their surface ratio.
Effect of water on the deactivation of coprecipitated Co-ZrO2 catalyst for Fischer-Tropsch synthesis
Resumo:
A convenient way to make water-soluble or water-dispersible conducting polyaniline was given by employing protonic acid dopants containing hydrophilic ethyleneoxide oligomer as counter-anion. The conducting polyaniline possessed electrical conductivity in the range of 10(-3) to 10(-2) S/cm, depending on the dopant, and it displayed excellent electrochemical redox reversibility in non-aqueous system.
Synthesis of aromatic polyimides in DMAc containing large amount of water and the properties thereof
Resumo:
A series of polyamic acids were prepared in N,N-dimethylactamide (DMAc) containing large amount of water, some of which contain the amount of water up to 25%. Their inherent viscosities decreased with the increase of water in DMAc, depending on the electronic properties of dianhydride and reaction condition. The molecular weights and mechanical properties of the polyimides thermally imidized from the polyamic acids were almost independent on the water content in solvent. The decomposition-resynthesis of polyamic acids during the curing was also investigated.
Resumo:
A convenient way to prepare water-soluble or water-dispersible conducting polyaniline was developed by employing protonic acid dopants containing hydrophilic ethyleneoxide oligomer as counter-ion. The conducting polyaniline possesses electrical conductivity in the range of 10(-3) to 10(-2) S/cm depending on the chosen dopant, and it displays an excellent electrochemical redox reversibility in non-aqueous systems.
Resumo:
Gadolinium fullerenols, as novel and potential contrast agents for magnetic resonance imaging, were synthesized, which showed excellent efficiency in enhancing water proton relaxation with a relaxivity of 47.0+/-1.0 mM(-1).s(-1).