998 resultados para Point defect


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel approach is presented for achieving an enhanced photo-response in a few layer graphene (FLG) based photodetector that is realized by introducing defect sites in the FLG. Fabrication induced wrinkle formation in graphene presented a four-fold enhancement in the photocurrent when compared to unfold PLC. Interestingly, it was observed that the addition of few multiwalled carbon nanotubes to an FLG improves the photocurrent by two-fold along with a highly stable response as compared to FLG alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A correlation between gas sensing properties and defect induced Room Temperature Ferromagnetism (RTFM) is demonstrated in non-stoichiometric SnO2 prepared by solution combustion method. The presence of oxygen vacancies (V-O), confirmed by RTFM is identified as the primary factor for enhanced gas sensing effect. The as-prepared SnO2 shows high saturation magnetization of similar to 0.018 emu/g as compared to similar to 0.002 and similar to 0.0005 emu/g in annealed samples and SnO2 prepared by precipitation respectively. The SnO2 prepared by precipitation which is an equilibrium method of synthesis shows lesser defects compared to the combustion product and hence exhibits lesser sensitivity in spite of smaller crystallite size. The study utilizes RTFM as a potential tool to characterize metal oxide gas sensors and recognizes the significance of oxygen vacancies in sensing mechanism over the microstructure. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ever-increasing number of diseases worldwide requires comprehensive, efficient, and cost-effective modes of treatments. Among various strategies, nanomaterials fulfill most of these criteria. The unique physicochemical properties of nanoparticles have made them a premier choice as a drug or a drug delivery system for the purpose of treatment, and as bio-detectors for disease prognosis. However, the main challenge is the proper consideration of the physical properties of these nanomaterials, while developing them as potential tools for therapeutics and/or diagnostics. In this review, we focus mainly on the characteristics of nanoparticles to develop an effective and sensitive system for clinical purposes. This review will present an overview of the important properties of nanoparticles, through their journey from its route of administration until disposal from the human body after accomplishing targeted functionality. We have chosen cancer as our model disease to explain the potentiality of nano-systems for therapeutics and diagnostics in relation to several organs (intestine, lung, brain, etc.). Furthermore, we have discussed their biodegradability and accumulation probability which can cause unfavorable side effects in healthy human subjects.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two new 2-(2-aminophenyl)benzimidazole-based HSO4- ion selective receptors, 6-(4-nitrophenyl)-5,6-dihydrobenzo4,5]imidazo1,2-c]quinazoline (L1H) and 6-(4-methoxyphenyl)-5,6-dihydrobenzo4,5]imidazo1,2-c] quinazoline (L2H), and their 1 : 1 molecular complexes with HSO4- were prepared in a facile synthetic method and characterized by physicochemical and spectroscopic techniques along with the detailed structural analysis of L1H by single crystal X-ray crystallography. Both receptors (L1H and L2H) behave as highly selective chemosensor for HSO4- ions at biological pH in ethanol-water HEPES buffer (1/5) (v/v) medium over other anions such as F-, Cl-, Br-, I-, AcO-, H2PO4-, N-3(-) and ClO4-. Theoretical and experimental studies showed that the emission efficiency of the receptors (L1H and L2H) was tuned successfully through single point to ratiometric detection by employing the substituent effects. Using 3 sigma method the LOD for HSO4- ions were found to be 18.08 nM and 14.11 nM for L1H and L2H, respectively, within a very short responsive time (15-20 s) in 100 mM HEPES buffer (ethanol-water: 1/5, v/v). Comparison of the utility of the probes (L1H and L2H) as biomarkers for the detection of intracellular HSO4- ions concentrations under a fluorescence microscope has also been included and both probes showed no cytotoxic effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of Stone-Wales (SW) and vacancy defects on the failure behavior of boron nitride nanotubes (BNNTs) under tension are investigated using molecular dynamics simulations. The Tersoff-Brenner potential is used to model the atomic interaction and the temperature is maintained close to 300 K. The effect of a SW defect is studied by determining the failure strength and failure mechanism of nanotubes with different radii. In the case of a vacancy defect, the effect of an N-vacancy and a B-vacancy is studied separately. Nanotubes with different chiralities but similar diameter is considered first to evaluate the chirality dependence. The variation of failure strength with the radius is then studied by considering nanotubes of different diameters but same chirality. It is observed that the armchair BNNTs are extremely sensitive to defects, whereas the zigzag configurations are the least sensitive. In the case of pristine BNNTs, both armchair and zigzag nanotubes undergo brittle failure, whereas in the case of defective BNNTs, only the zigzag ones undergo brittle failure. An interesting defect induced plastic behavior is observed in defective armchair BNNTs. For this nanotube, the presence of a defect triggers mechanical relaxation by bond breaking along the closest zigzag helical path, with the defect as the nucleus. This mechanism results in a plastic failure. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Initiator tRNAs are special in their direct binding to the ribosomal P-site due to the hallmark occurrence of the three consecutive G-C base pairs (3GC pairs) in their anticodon stems. How the 3GC pairs function in this role, has remained unsolved. We show that mutations in either the mRNA or 16S rRNA leading to extended interaction between the Shine-Dalgarno (SD) and anti-SD sequences compensate for the vital need of the 3GC pairs in tRNA(fMet) for its function in Escherichia coli. In vivo, the 3GC mutant tRNA(fMet) occurred less abundantly in 70S ribosomes but normally on 30S subunits. However, the extended SD:anti-SD interaction increased its occurrence in 70S ribosomes. We propose that the 3GC pairs play a critical role in tRNA(fMet) retention in ribosome during the conformational changes that mark the transition of 30S preinitiation complex into elongation competent 70S complex. Furthermore, treating cells with kasugamycin, decreasing ribosome recycling factor (RRF) activity or increasing initiation factor 2 (IF2) levels enhanced initiation with the 3GC mutant tRNA(fMet), suggesting that the 70S mode of initiation is less dependent on the 3GC pairs in tRNA(fMet).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given a point set P and a class C of geometric objects, G(C)(P) is a geometric graph with vertex set P such that any two vertices p and q are adjacent if and only if there is some C is an element of C containing both p and q but no other points from P. We study G(del)(P) graphs where del is the class of downward equilateral triangles (i.e., equilateral triangles with one of their sides parallel to the x-axis and the corner opposite to this side below that side). For point sets in general position, these graphs have been shown to be equivalent to half-Theta(6) graphs and TD-Delaunay graphs. The main result in our paper is that for point sets P in general position, G(del)(P) always contains a matching of size at least vertical bar P vertical bar-1/3] and this bound is tight. We also give some structural properties of G(star)(P) graphs, where is the class which contains both upward and downward equilateral triangles. We show that for point sets in general position, the block cut point graph of G(star)(P) is simply a path. Through the equivalence of G(star)(P) graphs with Theta(6) graphs, we also derive that any Theta(6) graph can have at most 5n-11 edges, for point sets in general position. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Haemophilus influenzae (H. Influenzae) is the causative agent of pneumonia, bacteraemia and meningitis. The organism is responsible for large number of deaths in both developed and developing countries. Even-though the first bacterial genome to be sequenced was that of H. Influenzae, there is no exclusive database dedicated for H. Influenzae. This prompted us to develop the Haemophilus influenzae Genome Database (HIGDB). Methods: All data of HIGDB are stored and managed in MySQL database. The HIGDB is hosted on Solaris server and developed using PERL modules. Ajax and JavaScript are used for the interface development. Results: The HIGDB contains detailed information on 42,741 proteins, 18,077 genes including 10 whole genome sequences and also 284 three dimensional structures of proteins of H. influenzae. In addition, the database provides ``Motif search'' and ``GBrowse''. The HIGDB is freely accessible through the URL:http://bioserverl.physicslisc.ernetin/HIGDB/. Discussion: The HIGDB will be a single point access for bacteriological, clinical, genomic and proteomic information of H. influenzae. The database can also be used to identify DNA motifs within H. influenzae genomes and to compare gene or protein sequences of a particular strain with other strains of H. influenzae. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider an exclusion process on a ring in which a particle hops to an empty neighboring site with a rate that depends on the number of vacancies n in front of it. In the steady state, using the well-known mapping of this model to the zero-range process, we write down an exact formula for the partition function and the particle-particle correlation function in the canonical ensemble. In the thermodynamic limit, we find a simple analytical expression for the generating function of the correlation function. This result is applied to the hop rate u(n) = 1 + (b/n) for which a phase transition between high-density laminar phase and low-density jammed phase occurs for b > 2. For these rates, we find that at the critical density, the correlation function decays algebraically with a continuously varying exponent b - 2. We also calculate the two-point correlation function above the critical density and find that the correlation length diverges with a critical exponent nu = 1/(b - 2) for b < 3 and 1 for b > 3. These results are compared with those obtained using an exact series expansion for finite systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The grain size of monolayer large area graphene is key to its performance. Microstructural design for the desired grain size requires a fundamental understanding of graphene nucleation and growth. The two levers that can be used to control these aspects are the defect density, whose population can be controlled by annealing, and the gas-phase supersaturation for activation of nucleation at the defect sites. We observe that defects on copper surface, namely dislocations, grain boundaries, triple points, and rolling marks, initiate nucleation of graphene. We show that among these defects dislocations are the most potent nucleation sites, as they get activated at lowest supersaturation. As an illustration, we tailor the defect density and supersaturation to change the domain size of graphene from <1 mu m(2) to >100 mu m(2). Growth data reported in the literature has been summarized on a supersaturation plot, and a regime for defect-dominated growth has been identified. In this growth regime, we demonstrate the spatial control over nucleation at intentionally introduced defects, paving the way for patterned growth of graphene. Our results provide a unified framework for understanding the role of defects in graphene nucleation and can be used as a guideline for controlled growth of graphene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the instantaneous spatial higher pair to lower pair substitute-connection which is kinematically equivalent up to acceleration analysis for two smooth surfaces in point contact. The existing first-order equivalent substitute-connection consisting of a Hooke's joint (U-joint) and a spherical joint (S-joint) connected by an additional link is extended up to second-order. A two step procedure is chalked out for achieving this equivalence. First, the existing method is employed for velocity equivalence. In the second step, the two centers of substitution are obtained as a conjugate relationship involving the principal normal curvatures of the surfaces at the contact point and the screw coordinates of the instantaneous screw axis (ISA) of the first-order relative motion. Unlike the classical planar replacement, this particular substitution cannot be done by merely examining the profiles of the contacting surfaces. An illustrative example of a three-link direct-contact mechanism is presented. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consider N points in R-d and M local coordinate systems that are related through unknown rigid transforms. For each point, we are given (possibly noisy) measurements of its local coordinates in some of the coordinate systems. Alternatively, for each coordinate system, we observe the coordinates of a subset of the points. The problem of estimating the global coordinates of the N points (up to a rigid transform) from such measurements comes up in distributed approaches to molecular conformation and sensor network localization, and also in computer vision and graphics. The least-squares formulation of this problem, although nonconvex, has a well-known closed-form solution when M = 2 (based on the singular value decomposition (SVD)). However, no closed-form solution is known for M >= 3. In this paper, we demonstrate how the least-squares formulation can be relaxed into a convex program, namely, a semidefinite program (SDP). By setting up connections between the uniqueness of this SDP and results from rigidity theory, we prove conditions for exact and stable recovery for the SDP relaxation. In particular, we prove that the SDP relaxation can guarantee recovery under more adversarial conditions compared to earlier proposed spectral relaxations, and we derive error bounds for the registration error incurred by the SDP relaxation. We also present results of numerical experiments on simulated data to confirm the theoretical findings. We empirically demonstrate that (a) unlike the spectral relaxation, the relaxation gap is mostly zero for the SDP (i.e., we are able to solve the original nonconvex least-squares problem) up to a certain noise threshold, and (b) the SDP performs significantly better than spectral and manifold-optimization methods, particularly at large noise levels.