486 resultados para Planets.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The two main tools to determine the dynamical and physical parameters of exoplanet systems are the radial velocity (RV) measurements and, when available, transit timings. The two techniques are complementary: The RV's allow us to know some of the orbital elements while the transit timings allow us to obtain the orbital inclination and planetary radius, impossible of obtain from the RV, and to resolve the indetermination in the determination of the planet mass from the RV's. The space observation of transiting planets is however not limited to transit times. They extend to long periods of time and are precise enough to provide information on variations along the orbit. Besides the effects of stellar rotation, deserve mention the Doppler shift in the radiation flux, as consequence of stellar movement around the center of mass, or Beaming Effect (BE); the Ellipsoidal Variability (EV) due to the tidal deformation of the star due to the gravitation of its close companion; and the Reflection (ER) of the stellar radiation incident on the planet and re-emitted to the observer. In the case of large hot Jupiters, these effects are enhanced by the strong gravitational interaction and the analysis of the light variation allows us independent estimates of the mass and radius of planet. The planetary system CoRoT 3 is favorable for such analysis. In this case, the secondary is a brown dwarf whose mass is of the order of 22Mj. We show results obtained from the analysis of 35 RV measurements, 236999 photometric observations and 11 additional RV observations made during a transit to determine the star rotation via the Rossiter-McLaughlin effect. The results obtained from this determination are presented in this communication. The results are compared to those resulting from other determinations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the orbital evolution of a two co-orbital planet system which undergo tidal interactions with the central star. Our main goal is to investigate the final outcome of a system originally evolving in a 1:1 resonant configuration when the tidal effect acts to change the orbital elements. Preliminary results of the numerical simulations of the exact equations of motions indicate that, at least for equal mass planets, the combined effect of resonant motion and tidal interaction leads the system to orbital instability, including collisions between the planets. We discuss the cases of two hot super-Earths and two hot-Saturn planets, comparing with the results of dynamical maps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radial velocities measured from near-infrared (NIR) spectra are a potential tool to search for extrasolar planets around cool stars. High resolution infrared spectrographs now available reach the high precision of visible instruments, with a constant improvement over time. GIANO is an infrared echelle spectrograph and it is a powerful tool to provide high resolution spectra for accurate radial velocity measurements of exo-planets and for chemical and dynamical studies of stellar or extragalactic objects. No other IR instruments have the GIANO's capability to cover the entire NIR wavelength range. In this work we develop an ensemble of IDL procedures to measure high precision radial velocities on a few GIANO spectra acquired during the commissioning run, using the telluric lines as wevelength reference. In Section 1.1 various exoplanet search methods are described. They exploit different properties of the planetary system. In Section 1.2 we describe the exoplanet population discovered trough the different methods. In Section 1.3 we explain motivations for NIR radial velocities and the challenges related the main issue that has limited the pursuit of high-precision NIR radial velocity, that is, the lack of a suitable calibration method. We briefly describe calibration methods in the visible and the solutions for IR calibration, for instance, the use of telluric lines. The latter has advantages and problems, described in detail. In this work we use telluric lines as wavelength reference. In Section 1.4 the Cross Correlation Function (CCF) method is described. This method is widely used to measure the radial velocities.In Section 1.5 we describe GIANO and its main science targets. In Chapter 2 observational data obtained with GIANO spectrograph are presented and the choice criteria are reported. In Chapter 3 we describe the detail of the analysis and examine in depth the flow chart reported in Section 3.1. In Chapter 4 we give the radial velocities measured with our IDL procedure for all available targets. We obtain an rms scatter in radial velocities of about 7 m/s. Finally, we conclude that GIANO can be used to measure radial velocities of late type stars with an accuracy close to or better than 10 m/s, using telluric lines as wevelength reference. In 2014 September GIANO is being operative at TNG for Science Verification and more observational data will allow to further refine this analysis.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a near-infrared (0.9-2.4 mu m) spectroscopic study of 73 field ultracool dwarfs having spectroscopic and/or kinematic evidence of youth (approximate to 10-300 Myr). Our sample is composed of 48 low-resolution (R approximate to 100) spectra and 41 moderate-resolution spectra (R greater than or similar to 750-2000). First, we establish a method for spectral typing M5-L7 dwarfs at near-IR wavelengths that is independent of gravity. We find that both visual and index-based classification in the near-IR provides consistent spectral types with optical spectral types, though with a small systematic offset in the case of visual classification at J and K band. Second, we examine features in the spectra of similar to 10 Myr ultracool dwarfs to define a set of gravity-sensitive indices based on FeH, VO, Ki, Nai, and H-band continuum shape. We then create an index-based method for classifying the gravities of M6-L5 dwarfs that provides consistent results with gravity classifications from optical spectroscopy. Our index-based classification can distinguish between young and dusty objects. Guided by the resulting classifications, we propose a set of low-gravity spectral standards for the near-IR. Finally, we estimate the ages corresponding to our gravity classifications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of optimal design of a multi-gravity-assist space trajectories, with free number of deep space maneuvers (MGADSM) poses multi-modal cost functions. In the general form of the problem, the number of design variables is solution dependent. To handle global optimization problems where the number of design variables varies from one solution to another, two novel genetic-based techniques are introduced: hidden genes genetic algorithm (HGGA) and dynamic-size multiple population genetic algorithm (DSMPGA). In HGGA, a fixed length for the design variables is assigned for all solutions. Independent variables of each solution are divided into effective and ineffective (hidden) genes. Hidden genes are excluded in cost function evaluations. Full-length solutions undergo standard genetic operations. In DSMPGA, sub-populations of fixed size design spaces are randomly initialized. Standard genetic operations are carried out for a stage of generations. A new population is then created by reproduction from all members based on their relative fitness. The resulting sub-populations have different sizes from their initial sizes. The process repeats, leading to increasing the size of sub-populations of more fit solutions. Both techniques are applied to several MGADSM problems. They have the capability to determine the number of swing-bys, the planets to swing by, launch and arrival dates, and the number of deep space maneuvers as well as their locations, magnitudes, and directions in an optimal sense. The results show that solutions obtained using the developed tools match known solutions for complex case studies. The HGGA is also used to obtain the asteroids sequence and the mission structure in the global trajectory optimization competition (GTOC) problem. As an application of GA optimization to Earth orbits, the problem of visiting a set of ground sites within a constrained time frame is solved. The J2 perturbation and zonal coverage are considered to design repeated Sun-synchronous orbits. Finally, a new set of orbits, the repeated shadow track orbits (RSTO), is introduced. The orbit parameters are optimized such that the shadow of a spacecraft on the Earth visits the same locations periodically every desired number of days.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The solar wind continuously flows out from the Sun and directly interacts with the surfaces of dust and airless planetary bodies throughout the solar system. A significant fraction of solar wind ions reflect from an object's surface as energetic neutral atoms (ENAs). ENA emission from the Moon was first observed during commissioning of the Interstellar Boundary Explorer (IBEX) mission on 3 December 2008. We present the analysis of 10 additional IBEX observations of the Moon while it was illuminated by the solar wind. For the viewing geometry and energy range (> 250 eV) of the IBEX-Hi ENA imager, we find that the spectral shape of the ENA emission from the Moon is well-represented by a linearly decreasing flux with increasing energy. The fraction of the incident solar wind ions reflected as ENAs, which is the ENA albedo and defined quantitatively as the ENA reflection coefficient RN, depends on the incident solar wind speed, ranging from ~0.2 for slow solar wind to ~0.08 for fast solar wind. The average energy per incident solar wind ion that is reflected to space is 30 eV for slow solar wind and 45 eV for fast solar wind. Once ionized, these ENAs can become pickup ions in the solar wind with a unique spectral signature that reaches 3vSW. These results apply beyond the solar system; the reflection process heats plasmas that have significant bulk flow relative to interstellar dust and cools plasmas having no net bulk flow relative to the dust.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ancient southern highlands on Mars (~3.5 Gyr old) contain > 600 regions that display spectral evidence in the infrared for the presence of chloride-bearing materials. Many of these locations were previously reported to display polygonal cracking patterns. We studied more than 80 of the chloride-bearing terrains using high-resolution (0.25-0.5 m/pixel) images, as well as near-infrared spectral data, to characterize the surface textures and the associated cracking patterns and mineralogies. Our study indicates that ~75% of the studied locations display polygonal cracks that resemble desiccation cracks, while some resemble salt expansion/thrust polygons. Furthermore, we detect, spectrally, the presence of smectites in association with ~30% of the studied fractured terrains. We note that smectites are a special class of swelling clay minerals that can induce formation of large desiccation cracks. As such, we suggest that the cracking patterns are indicative of the presence of smectite phyllosilicates even in the absence of spectral confirmation. Our results suggest that many chloride-bearing terrains have a lacustrine origin and a geologic setting similar to playas on Earth. Such locations would have contained ephemeral lakes that may have undergone repeated cycles of desiccation and recharging by a near-surface fluctuating water table in order to account for the salt-phyllosilicates associations. These results have notable implications for the ancient hydrology of Mars. We propose that the morphologies and sizes of the polygonal cracks can be used as paleoenvironmental, as well as lithological, indicators that could be helpful in planning future missions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have measured the bidirectional reflectance of analogs of dry, wet, and frozen Martian soils over a wide range of phase angles in the visible spectral range. All samples were produced from two geologic samples: the standard JSC Mars-1 soil simulant and Hawaiian basaltic sand. In a first step, experiments were conducted with the dry samples to investigate the effects of surface texture. Comparisons with results independently obtained by different teams with similar samples showed a satisfying reproducibility of the photometric measurements as well as a noticeable influence of surface textures resulting from different sample preparation procedures. In a second step, water was introduced to produce wet and frozen samples and their photometry investigated. Optical microscope images of the samples provided information about their microtexture. Liquid water, even in relatively low amount, resulted in the disappearance of the backscattering peak and the appearance of a forward-scattering peak whose intensity increases with the amount of water. Specular reflections only appeared when water was present in an amount large enough to allow water to form a film at the surface of the sample. Icy samples showed a wide variability of photometric properties depending on the physical properties of the water ice. We discuss the implications of these measurements in terms of the expected photometric behavior of the Martian surface, from equatorial to circum-polar regions. In particular, we propose some simple photometric criteria to improve the identification of wet and/or icy soils from multiple observations under different geometries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. Planet formation models have been developed during the past years to try to reproduce what has been observed of both the solar system and the extrasolar planets. Some of these models have partially succeeded, but they focus on massive planets and, for the sake of simplicity, exclude planets belonging to planetary systems. However, more and more planets are now found in planetary systems. This tendency, which is a result of radial velocity, transit, and direct imaging surveys, seems to be even more pronounced for low-mass planets. These new observations require improving planet formation models, including new physics, and considering the formation of systems. Aims: In a recent series of papers, we have presented some improvements in the physics of our models, focussing in particular on the internal structure of forming planets, and on the computation of the excitation state of planetesimals and their resulting accretion rate. In this paper, we focus on the concurrent effect of the formation of more than one planet in the same protoplanetary disc and show the effect, in terms of architecture and composition of this multiplicity. Methods: We used an N-body calculation including collision detection to compute the orbital evolution of a planetary system. Moreover, we describe the effect of competition for accretion of gas and solids, as well as the effect of gravitational interactions between planets. Results: We show that the masses and semi-major axes of planets are modified by both the effect of competition and gravitational interactions. We also present the effect of the assumed number of forming planets in the same system (a free parameter of the model), as well as the effect of the inclination and eccentricity damping. We find that the fraction of ejected planets increases from nearly 0 to 8% as we change the number of embryos we seed the system with from 2 to 20 planetary embryos. Moreover, our calculations show that, when considering planets more massive than ~5 M⊕, simulations with 10 or 20 planetary embryos statistically give the same results in terms of mass function and period distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. According to the sequential accretion model (or core-nucleated accretion model), giant planet formation is based first on the formation of a solid core which, when massive enough, can gravitationally bind gas from the nebula to form the envelope. The most critical part of the model is the formation time of the core: to trigger the accretion of gas, the core has to grow up to several Earth masses before the gas component of the protoplanetary disc dissipates. Aims: We calculate planetary formation models including a detailed description of the dynamics of the planetesimal disc, taking into account both gas drag and excitation of forming planets. Methods: We computed the formation of planets, considering the oligarchic regime for the growth of the solid core. Embryos growing in the disc stir their neighbour planetesimals, exciting their relative velocities, which makes accretion more difficult. Here we introduce a more realistic treatment for the evolution of planetesimals' relative velocities, which directly impact on the formation timescale. For this, we computed the excitation state of planetesimals, as a result of stirring by forming planets, and gas-solid interactions. Results: We find that the formation of giant planets is favoured by the accretion of small planetesimals, as their random velocities are more easily damped by the gas drag of the nebula. Moreover, the capture radius of a protoplanet with a (tiny) envelope is also larger for small planetesimals. However, planets migrate as a result of disc-planet angular momentum exchange, with important consequences for their survival: due to the slow growth of a protoplanet in the oligarchic regime, rapid inward type I migration has important implications on intermediate-mass planets that have not yet started their runaway accretion phase of gas. Most of these planets are lost in the central star. Surviving planets have masses either below 10 M⊕ or above several Jupiter masses. Conclusions: To form giant planets before the dissipation of the disc, small planetesimals (~0.1 km) have to be the major contributors of the solid accretion process. However, the combination of oligarchic growth and fast inward migration leads to the absence of intermediate-mass planets. Other processes must therefore be at work to explain the population of extrasolar planets that are presently known.