972 resultados para Photon Counting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automatic visual object counting and video surveillance have important applications for home and business environments, such as security and management of access points. However, in order to obtain a satisfactory performance these technologies need professional and expensive hardware, complex installations and setups, and the supervision of qualified workers. In this paper, an efficient visual detection and tracking framework is proposed for the tasks of object counting and surveillance, which meets the requirements of the consumer electronics: off-the-shelf equipment, easy installation and configuration, and unsupervised working conditions. This is accomplished by a novel Bayesian tracking model that can manage multimodal distributions without explicitly computing the association between tracked objects and detections. In addition, it is robust to erroneous, distorted and missing detections. The proposed algorithm is compared with a recent work, also focused on consumer electronics, proving its superior performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synapses in the cerebral cortex can be classified into two main types, Gray’s type I and type II, which correspond to asymmetric (mostly glutamatergic excitatory) and symmetric (inhibitory GABAergic) synapses, respectively. Hence, the quantification and identification of their different types and the proportions in which they are found, is extraordinarily important in terms of brain function. The ideal approach to calculate the number of synapses per unit volume is to analyze 3D samples reconstructed from serial sections. However, obtaining serial sections by transmission electron microscopy is an extremely time consuming and technically demanding task. Using focused ion beam/scanning electron microscope microscopy, we recently showed that virtually all synapses can be accurately identified as asymmetric or symmetric synapses when they are visualized, reconstructed, and quantified from large 3D tissue samples obtained in an automated manner. Nevertheless, the analysis, segmentation, and quantification of synapses is still a labor intensive procedure. Thus, novel solutions are currently necessary to deal with the large volume of data that is being generated by automated 3D electron microscopy. Accordingly, we have developed ESPINA, a software tool that performs the automated segmentation and counting of synapses in a reconstructed 3D volume of the cerebral cortex, and that greatly facilitates and accelerates these processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Cu2ZnSnS4 (CZTS) semiconductor is a potential photovoltaic material due to its optoelectronic properties. These optoelectronic properties can be potentially improved by the insertion of intermediate states into the energy bandgap. We explore this possibility using Cr as an impurity. We carried out first-principles calculations within the density functional theory analyzing three substitutions: Cu, Sn, or Zn by Cr. In all cases, the Cr introduces a deeper band into the host energy bandgap. Depending on the substitution, this band is full, empty, or partially full. The absorption coefficients in the independent-particle approximation have also been obtained. Comparison between the pure and doped host's absorption coefficients shows that this deeper band opens more photon absorption channels and could therefo:e increase the solar-light absorption with respect to the host.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Kuhnian approach to research assessment requires us to consider that the important scientific breakthroughs that drive scientific progress are infrequent and that the progress of science does not depend on normal research. Consequently, indicators of research performance based on the total number of papers do not accurately measure scientific progress. Similarly, those universities with the best reputations in terms of scientific progress differ widely from other universities in terms of the scale of investments made in research and in the higher concentrations of outstanding scientists present, but less so in terms of the total number of papers or citations. This study argues that indicators for the 1% high-citation tail of the citation distribution reveal the contribution of universities to the progress of science and provide quantifiable justification for the large investments in research made by elite research universities. In this tail, which follows a power low, the number of the less frequent and highly cited important breakthroughs can be predicted from the frequencies of papers in the upper part of the tail. This study quantifies the false impression of excellence produced by multinational papers, and by other types of papers that do not contribute to the progress of science. Many of these papers are concentrated in and dominate lists of highly cited papers, especially in lower-ranked universities. The h-index obscures the differences between higher- and lower-ranked universities because the proportion of h-core papers in the 1% high-citation tail is not proportional to the value of the h-index.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El objetivo de la tesis es investigar los beneficios que el atrapamiento de la luz mediante fenómenos difractivos puede suponer para las células solares de silicio cristalino y las de banda intermedia. Ambos tipos de células adolecen de una insuficiente absorción de fotones en alguna región del espectro solar. Las células solares de banda intermedia son teóricamente capaces de alcanzar eficiencias mucho mayores que los dispositivos convencionales (con una sola banda energética prohibida), pero los prototipos actuales se resienten de una absorción muy débil de los fotones con energías menores que la banda prohibida. Del mismo modo, las células solares de silicio cristalino absorben débilmente en el infrarrojo cercano debido al carácter indirecto de su banda prohibida. Se ha prestado mucha atención a este problema durante las últimas décadas, de modo que todas las células solares de silicio cristalino comerciales incorporan alguna forma de atrapamiento de luz. Por razones de economía, en la industria se persigue el uso de obleas cada vez más delgadas, con lo que el atrapamiento de la luz adquiere más importancia. Por tanto aumenta el interés en las estructuras difractivas, ya que podrían suponer una mejora sobre el estado del arte. Se comienza desarrollando un método de cálculo con el que simular células solares equipadas con redes de difracción. En este método, la red de difracción se analiza en el ámbito de la óptica física, mediante análisis riguroso con ondas acopladas (rigorous coupled wave analysis), y el sustrato de la célula solar, ópticamente grueso, se analiza en los términos de la óptica geométrica. El método se ha implementado en ordenador y se ha visto que es eficiente y da resultados en buen acuerdo con métodos diferentes descritos por otros autores. Utilizando el formalismo matricial así derivado, se calcula el límite teórico superior para el aumento de la absorción en células solares mediante el uso de redes de difracción. Este límite se compara con el llamado límite lambertiano del atrapamiento de la luz y con el límite absoluto en sustratos gruesos. Se encuentra que las redes biperiódicas (con geometría hexagonal o rectangular) pueden producir un atrapamiento mucho mejor que las redes uniperiódicas. El límite superior depende mucho del periodo de la red. Para periodos grandes, las redes son en teoría capaces de alcanzar el máximo atrapamiento, pero sólo si las eficiencias de difracción tienen una forma peculiar que parece inalcanzable con las herramientas actuales de diseño. Para periodos similares a la longitud de onda de la luz incidente, las redes de difracción pueden proporcionar atrapamiento por debajo del máximo teórico pero por encima del límite Lambertiano, sin imponer requisitos irrealizables a la forma de las eficiencias de difracción y en un margen de longitudes de onda razonablemente amplio. El método de cálculo desarrollado se usa también para diseñar y optimizar redes de difracción para el atrapamiento de la luz en células solares. La red propuesta consiste en un red hexagonal de pozos cilíndricos excavados en la cara posterior del sustrato absorbente de la célula solar. La red se encapsula en una capa dieléctrica y se cubre con un espejo posterior. Se simula esta estructura para una célula solar de silicio y para una de banda intermedia y puntos cuánticos. Numéricamente, se determinan los valores óptimos del periodo de la red y de la profundidad y las dimensiones laterales de los pozos para ambos tipos de células. Los valores se explican utilizando conceptos físicos sencillos, lo que nos permite extraer conclusiones generales que se pueden aplicar a células de otras tecnologías. Las texturas con redes de difracción se fabrican en sustratos de silicio cristalino mediante litografía por nanoimpresión y ataque con iones reactivos. De los cálculos precedentes, se conoce el periodo óptimo de la red que se toma como una constante de diseño. Los sustratos se procesan para obtener estructuras precursoras de células solares sobre las que se realizan medidas ópticas. Las medidas de reflexión en función de la longitud de onda confirman que las redes cuadradas biperiódicas consiguen mejor atrapamiento que las uniperiódicas. Las estructuras fabricadas se simulan con la herramienta de cálculo descrita en los párrafos precedentes y se obtiene un buen acuerdo entre la medida y los resultados de la simulación. Ésta revela que una fracción significativa de los fotones incidentes son absorbidos en el reflector posterior de aluminio, y por tanto desaprovechados, y que este efecto empeora por la rugosidad del espejo. Se desarrolla un método alternativo para crear la capa dieléctrica que consigue que el reflector se deposite sobre una superficie plana, encontrándose que en las muestras preparadas de esta manera la absorción parásita en el espejo es menor. La siguiente tarea descrita en la tesis es el estudio de la absorción de fotones en puntos cuánticos semiconductores. Con la aproximación de masa efectiva, se calculan los niveles de energía de los estados confinados en puntos cuánticos de InAs/GaAs. Se emplea un método de una y de cuatro bandas para el cálculo de la función de onda de electrones y huecos, respectivamente; en el último caso se utiliza un hamiltoniano empírico. La regla de oro de Fermi permite obtener la intensidad de las transiciones ópticas entre los estados confinados. Se investiga el efecto de las dimensiones del punto cuántico en los niveles de energía y la intensidad de las transiciones y se obtiene que, al disminuir la anchura del punto cuántico respecto a su valor en los prototipos actuales, se puede conseguir una transición más intensa entre el nivel intermedio fundamental y la banda de conducción. Tomando como datos de partida los niveles de energía y las intensidades de las transiciones calculados como se ha explicado, se desarrolla un modelo de equilibrio o balance detallado realista para células solares de puntos cuánticos. Con el modelo se calculan las diferentes corrientes debidas a transiciones ópticas entre los numerosos niveles intermedios y las bandas de conducción y de valencia bajo ciertas condiciones. Se distingue de modelos de equilibrio detallado previos, usados para calcular límites de eficiencia, en que se adoptan suposiciones realistas sobre la absorción de fotones para cada transición. Con este modelo se reproducen datos publicados de eficiencias cuánticas experimentales a diferentes temperaturas con un acuerdo muy bueno. Se muestra que el conocido fenómeno del escape térmico de los puntos cuánticos es de naturaleza fotónica; se debe a los fotones térmicos, que inducen transiciones entre los estados excitados que se encuentran escalonados en energía entre el estado intermedio fundamental y la banda de conducción. En el capítulo final, este modelo realista de equilibrio detallado se combina con el método de simulación de redes de difracción para predecir el efecto que tendría incorporar una red de difracción en una célula solar de banda intermedia y puntos cuánticos. Se ha de optimizar cuidadosamente el periodo de la red para equilibrar el aumento de las diferentes transiciones intermedias, que tienen lugar en serie. Debido a que la absorción en los puntos cuánticos es extremadamente débil, se deduce que el atrapamiento de la luz, por sí solo, no es suficiente para conseguir corrientes apreciables a partir de fotones con energía menor que la banda prohibida en las células con puntos cuánticos. Se requiere una combinación del atrapamiento de la luz con un incremento de la densidad de puntos cuánticos. En el límite radiativo y sin atrapamiento de la luz, se necesitaría que el número de puntos cuánticos de una célula solar se multiplicara por 1000 para superar la eficiencia de una célula de referencia con una sola banda prohibida. En cambio, una célula con red de difracción precisaría un incremento del número de puntos en un factor 10 a 100, dependiendo del nivel de la absorción parásita en el reflector posterior. Abstract The purpose of this thesis is to investigate the benefits that diffractive light trapping can offer to quantum dot intermediate band solar cells and crystalline silicon solar cells. Both solar cell technologies suffer from incomplete photon absorption in some part of the solar spectrum. Quantum dot intermediate band solar cells are theoretically capable of achieving much higher efficiencies than conventional single-gap devices. Present prototypes suffer from extremely weak absorption of subbandgap photons in the quantum dots. This problem has received little attention so far, yet it is a serious barrier to the technology approaching its theoretical efficiency limit. Crystalline silicon solar cells absorb weakly in the near infrared due to their indirect bandgap. This problem has received much attention over recent decades, and all commercial crystalline silicon solar cells employ some form of light trapping. With the industry moving toward thinner and thinner wafers, light trapping is becoming of greater importance and diffractive structures may offer an improvement over the state-of-the-art. We begin by constructing a computational method with which to simulate solar cells equipped with diffraction grating textures. The method employs a wave-optical treatment of the diffraction grating, via rigorous coupled wave analysis, with a geometric-optical treatment of the thick solar cell bulk. These are combined using a steady-state matrix formalism. The method has been implemented computationally, and is found to be efficient and to give results in good agreement with alternative methods from other authors. The theoretical upper limit to absorption enhancement in solar cells using diffractions gratings is calculated using the matrix formalism derived in the previous task. This limit is compared to the so-called Lambertian limit for light trapping with isotropic scatterers, and to the absolute upper limit to light trapping in bulk absorbers. It is found that bi-periodic gratings (square or hexagonal geometry) are capable of offering much better light trapping than uni-periodic line gratings. The upper limit depends strongly on the grating period. For large periods, diffraction gratings are theoretically able to offer light trapping at the absolute upper limit, but only if the scattering efficiencies have a particular form, which is deemed to be beyond present design capabilities. For periods similar to the incident wavelength, diffraction gratings can offer light trapping below the absolute limit but above the Lambertian limit without placing unrealistic demands on the exact form of the scattering efficiencies. This is possible for a reasonably broad wavelength range. The computational method is used to design and optimise diffraction gratings for light trapping in solar cells. The proposed diffraction grating consists of a hexagonal lattice of cylindrical wells etched into the rear of the bulk solar cell absorber. This is encapsulated in a dielectric buffer layer, and capped with a rear reflector. Simulations are made of this grating profile applied to a crystalline silicon solar cell and to a quantum dot intermediate band solar cell. The grating period, well depth, and lateral well dimensions are optimised numerically for both solar cell types. This yields the optimum parameters to be used in fabrication of grating equipped solar cells. The optimum parameters are explained using simple physical concepts, allowing us to make more general statements that can be applied to other solar cell technologies. Diffraction grating textures are fabricated on crystalline silicon substrates using nano-imprint lithography and reactive ion etching. The optimum grating period from the previous task has been used as a design parameter. The substrates have been processed into solar cell precursors for optical measurements. Reflection spectroscopy measurements confirm that bi-periodic square gratings offer better absorption enhancement than uni-periodic line gratings. The fabricated structures have been simulated with the previously developed computation tool, with good agreement between measurement and simulation results. The simulations reveal that a significant amount of the incident photons are absorbed parasitically in the rear reflector, and that this is exacerbated by the non-planarity of the rear reflector. An alternative method of depositing the dielectric buffer layer was developed, which leaves a planar surface onto which the reflector is deposited. It was found that samples prepared in this way suffered less from parasitic reflector absorption. The next task described in the thesis is the study of photon absorption in semiconductor quantum dots. The bound-state energy levels of in InAs/GaAs quantum dots is calculated using the effective mass approximation. A one- and four- band method is applied to the calculation of electron and hole wavefunctions respectively, with an empirical Hamiltonian being employed in the latter case. The strength of optical transitions between the bound states is calculated using the Fermi golden rule. The effect of the quantum dot dimensions on the energy levels and transition strengths is investigated. It is found that a strong direct transition between the ground intermediate state and the conduction band can be promoted by decreasing the quantum dot width from its value in present prototypes. This has the added benefit of reducing the ladder of excited states between the ground state and the conduction band, which may help to reduce thermal escape of electrons from quantum dots: an undesirable phenomenon from the point of view of the open circuit voltage of an intermediate band solar cell. A realistic detailed balance model is developed for quantum dot solar cells, which uses as input the energy levels and transition strengths calculated in the previous task. The model calculates the transition currents between the many intermediate levels and the valence and conduction bands under a given set of conditions. It is distinct from previous idealised detailed balance models, which are used to calculate limiting efficiencies, since it makes realistic assumptions about photon absorption by each transition. The model is used to reproduce published experimental quantum efficiency results at different temperatures, with quite good agreement. The much-studied phenomenon of thermal escape from quantum dots is found to be photonic; it is due to thermal photons, which induce transitions between the ladder of excited states between the ground intermediate state and the conduction band. In the final chapter, the realistic detailed balance model is combined with the diffraction grating simulation method to predict the effect of incorporating a diffraction grating into a quantum dot intermediate band solar cell. Careful optimisation of the grating period is made to balance the enhancement given to the different intermediate transitions, which occur in series. Due to the extremely weak absorption in the quantum dots, it is found that light trapping alone is not sufficient to achieve high subbandgap currents in quantum dot solar cells. Instead, a combination of light trapping and increased quantum dot density is required. Within the radiative limit, a quantum dot solar cell with no light trapping requires a 1000 fold increase in the number of quantum dots to supersede the efficiency of a single-gap reference cell. A quantum dot solar cell equipped with a diffraction grating requires between a 10 and 100 fold increase in the number of quantum dots, depending on the level of parasitic absorption in the rear reflector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Empiric k·p Hamiltonian method is usually applied to nanostructured semiconductors. In this paper, it is applied to a homogeneous semiconductor in order to check the adequacy of the method. In this case, the solutions of the diagonalized Hamiltonian, as well as the envelope functions, are plane waves. The procedure is applied to the GaAs and the interband absorption coefficients are calculated. They result in reasonable agreement with the measured values, further supporting the adequacy of the Empiric k·p Hamiltonian method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been proposed that the use of self-assembled quantum dot (QD) arrays can break the Shockley-Queisser efficiency limit by extending the absorption of solar cells into the low-energy photon range while preserving their output voltage. This would be possible if the infrared photons are absorbed in the two sub-bandgap QD transitions simultaneously and the energy of two photons is added up to produce one single electron-hole pair, as described by the intermediate band model. Here, we present an InAs/Al 0.25Ga 0.75As QD solar cell that exhibits such electrical up-conversion of low-energy photons. When the device is monochromatically illuminated with 1.32 eV photons, open-circuit voltages as high as 1.58 V are measured (for a total gap of 1.8 eV). Moreover, the photocurrent produced by illumination with photons exciting the valence band to intermediate band (VB-IB) and the intermediate band to conduction band (IB-CB) transitions can be both spectrally resolved. The first corresponds to the QD inter-band transition and is observable for photons of energy mayor que 1 eV, and the later corresponds to the QD intra-band transition and peaks around 0.5 eV. The voltage up-conversion process reported here for the first time is the key to the use of the low-energy end of the solar spectrum to increase the conversion efficiency, and not only the photocurrent, of single-junction photovoltaic devices. In spite of the low absorption threshold measured in our devices - 0.25 eV - we report open-circuit voltages at room temperature as high as 1.12 V under concentrated broadband illumination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multijunction solar cells can be fabricated by mechanically bonding together component cells that are grown separately. Here, we present four-junction four-terminal mechanical stacks composed of GaInP/GaAs tandems grown on GaAs substrates and GaInAsP/GaInAs tandems grown on InP substrates. The component cells were bonded together with a low-index transparent epoxy that acts as an angularly selective reflector to the GaAs bandedge luminescence, while simultaneously transmitting nearly all of the subbandgap light. As determined by electroluminescence measurements and optical modeling, the GaAs subcell demonstrates a higher internal radiative limit and, thus, higher subcell voltage, compared with GaAs subcells without the epoxy reflector. The best cells demonstrate 38.8 ± 1.0% efficiency under the global spectrum at 1000 W/m2 and ~ 42% under the direct spectrum at ~100 suns. Eliminating the series resistance is the key challenge for further improving the concentrator cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-dimensional infrared spectra of peptides are introduced that are the direct analogues of two- and three-pulse multiple quantum NMR. Phase matching and heterodyning are used to isolate the phase and amplitudes of the electric fields of vibrational photon echoes as a function of multiple pulse delays. Structural information is made available on the time scale of a few picoseconds. Line narrowed spectra of acyl-proline-NH2 and cross peaks implying the coupling between its amide-I modes are obtained, as are the phases of the various contributions to the signals. Solvent-sensitive structural differences are seen for the dipeptide. The methods show great promise to measure structure changes in biology on a wide range of time scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Localized, chemical two-photon photolysis of caged glutamate was used to map the changes in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors caused by long-term synaptic depression (LTD) in cerebellar Purkinje cells. LTD produced by pairing parallel fiber activity with depolarization was accompanied by a decline in the response of Purkinje cells to uncaged glutamate that accounted for both the time course and magnitude of LTD. This depression of glutamate responses was observed not only at the site of parallel fiber stimulation but also at more distant sites. The amount of LTD decreased with distance and was half-maximal 50 μm away from the site of parallel fiber activity. Estimation of the number of parallel fibers active during LTD induction indicates that LTD modified glutamate receptors not only at active synapses but also at 600 times as many inactive synapses on a single Purkinje cell. Therefore, both active and inactive parallel fiber synapses can undergo changes at a postsynaptic locus as a result of associative pre- and postsynaptic activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Confocal fluorescence correlation spectroscopy as a time-averaging fluctuation analysis combining maximum sensitivity with high statistical confidence has proved to be a very versatile and powerful tool for detection and temporal investigation of biomolecules at ultralow concentrations on surfaces, in solutions, and in living cells. To probe the interaction of different molecular species for a detailed understanding of biologically relevant mechanisms, crosscorrelation studies on dual or multiple fluorophore assays with spectrally distinct excitation and emission are particularly promising. Despite the considerable improvement of detection specificity provided by fluorescence crosscorrelation analysis, few applications have so far been reported, presumably because of the practical challenges of properly aligning and controlling the stability of the experimental setup. In this work, we demonstrate that two-photon excitation combined with dual-color fluorescence correlation spectroscopy can be the key to simplifying simultaneous investigations of multiple fluorescent species significantly on a single-molecule scale. Two-photon excitation allows accession of common fluorophores of largely distinct emission by the same excitation wavelength, because differences in selection rules and vibronic coupling can induce considerable shifts between the one-photon and two-photon excitation spectra. The concept of dual-color two-photon fluorescence crosscorrelation analysis is introduced and experimentally demonstrated with an established assay probing the selective cleavage of dual-labeled DNA substrates by restriction endonuclease EcoRI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved excited-state absorption intensities after direct two-photon excitation of the carotenoid S1 state are reported for light-harvesting complexes of purple bacteria. Direct excitation of the carotenoid S1 state enables the measurement of subsequent dynamics on a fs time scale without interference from higher excited states, such as the optically allowed S2 state or the recently discovered dark state situated between S1 and S2. The lifetimes of the carotenoid S1 states in the B800-B850 complex and B800-B820 complex of Rhodopseudomonas acidophila are 7 ± 0.5 ps and 6 ± 0.5 ps, respectively, and in the light-harvesting complex 2 of Rhodobacter sphaeroides ≈1.9 ± 0.5 ps. These results explain the differences in the carotenoid to bacteriochlorophyll energy transfer efficiency after S2 excitation. In Rps. acidophila the carotenoid S1 to bacteriochlorophyll energy transfer is found to be quite inefficient (φET1 <28%) whereas in Rb. sphaeroides this energy transfer is very efficient (φET1 ≈80%). The results are rationalized by calculations of the ensemble averaged time constants. We find that the Car S1 → B800 electronic energy transfer (EET) pathway (≈85%) dominates over Car S1 → B850 EET (≈15%) in Rb. sphaeroides, whereas in Rps. acidophila the Car S1 → B850 EET (≈60%) is more efficient than the Car S1 → B800 EET (≈40%). The individual electronic couplings for the Car S1 → BChl energy transfer are estimated to be approximately 5–26 cm−1. A major contribution to the difference between the energy transfer efficiencies can be explained by different Car S1 energy gaps in the two species.

Relevância:

20.00% 20.00%

Publicador: