964 resultados para Phosphoinositide-dependent Kinase
Resumo:
Le remodelage vasculaire dû à l’hyper-prolifération cellulaire des cellules musculaires lisses vasculaires (CMLVs) observé chez les rats spontanément hypertendus (RSH) est associé à l’hypertension artérielle. Nous avons précédemment démontré que le traitement in vivo des RSH par l’agoniste spécifique du récepteur du peptide natriurétique de type C (NPR-C), le C-ANP4-23 atténue l’hyper-prolifération des CMLVs. Nous avons entrepris cette étude afin d’investiguer si l’effet antiprolifératif du C-ANP4-23 agit par l’entremise de l’inhibition de la surexpression des protéines du cycle cellulaire, et afin d’en explorer les mécanismes sous-jacents. Pour cette étude, des RSH et des rats Wistar Kyoto (WKYs) âgés de deux semaines ont été injectés en intra-péritonéale par le C-ANP4-23 de 2 jusqu’à 8 semaines d’âge, deux fois par semaine et sacrifiés à la 9ème semaine. La pression artérielle a été mesurée par méthode Queue-coiffe, la prolifération des CMLVs a été déterminée par incorporation de thymidine et par test MTT, et l’expression des protéines a été quant à elle déterminée par technique d’immunobuvardage de type Western. Les CMLVs des RSH ont démontré une prolifération élevée en comparaison avec celles des WKYs, et le traitement par le C-ANP4-23 a atténué l’hyperprolifération à un niveau de contrôle. De plus, la surexpression des cyclines D1/A/E, des kinases cyclines dépendantes 2 et 4 (cdk2, cdk4), de la forme phosphorylée de la protéine du rétinoblastome et des protéines Gαi des CMLV des RSH a été atténuée à un niveau de contrôle. Par ailleurs, l’hyperphosphorylation d’ERK1/2, AKT, EGF-R, PDGF-R, IGF-R et de c-Src a significativement diminué par le traitement au C-ANP4-23. En outre, le niveau élevé de l’anion superoxyde (O2-), l’activité de la NADP(H) oxydase et de ses sous unités chez les RSH ont été atténués par le C-ANP4-23 .Ces résultats indiquent que l’activation in vivo de NPR-C atténue la surexpression des protéines du cycle cellulaire via l’inhibition de l’activité élevée du stress oxydatif, de c-Src et de l’activation de EGF-R, PDGF- R, IGF-R, de la signalisation de MAPK et la surexpression des protéines Gαi résultant ainsi en l’inhibition de l’hyperprolifération des CMLVs des RSH. Ainsi, il peut être suggéré que le C-ANP4-23 pourrait être utilisé comme agent thérapeutique pour le traitement des complications vasculaires associées à l’hypertension et à l’athérosclérose.
Resumo:
Le remodelage vasculaire dû à l’hyper-prolifération cellulaire des cellules musculaires lisses vasculaires (CMLVs) observé chez les rats spontanément hypertendus (RSH) est associé à l’hypertension artérielle. Nous avons précédemment démontré que le traitement in vivo des RSH par l’agoniste spécifique du récepteur du peptide natriurétique de type C (NPR-C), le C-ANP4-23 atténue l’hyper-prolifération des CMLVs. Nous avons entrepris cette étude afin d’investiguer si l’effet antiprolifératif du C-ANP4-23 agit par l’entremise de l’inhibition de la surexpression des protéines du cycle cellulaire, et afin d’en explorer les mécanismes sous-jacents. Pour cette étude, des RSH et des rats Wistar Kyoto (WKYs) âgés de deux semaines ont été injectés en intra-péritonéale par le C-ANP4-23 de 2 jusqu’à 8 semaines d’âge, deux fois par semaine et sacrifiés à la 9ème semaine. La pression artérielle a été mesurée par méthode Queue-coiffe, la prolifération des CMLVs a été déterminée par incorporation de thymidine et par test MTT, et l’expression des protéines a été quant à elle déterminée par technique d’immunobuvardage de type Western. Les CMLVs des RSH ont démontré une prolifération élevée en comparaison avec celles des WKYs, et le traitement par le C-ANP4-23 a atténué l’hyperprolifération à un niveau de contrôle. De plus, la surexpression des cyclines D1/A/E, des kinases cyclines dépendantes 2 et 4 (cdk2, cdk4), de la forme phosphorylée de la protéine du rétinoblastome et des protéines Gαi des CMLV des RSH a été atténuée à un niveau de contrôle. Par ailleurs, l’hyperphosphorylation d’ERK1/2, AKT, EGF-R, PDGF-R, IGF-R et de c-Src a significativement diminué par le traitement au C-ANP4-23. En outre, le niveau élevé de l’anion superoxyde (O2-), l’activité de la NADP(H) oxydase et de ses sous unités chez les RSH ont été atténués par le C-ANP4-23 .Ces résultats indiquent que l’activation in vivo de NPR-C atténue la surexpression des protéines du cycle cellulaire via l’inhibition de l’activité élevée du stress oxydatif, de c-Src et de l’activation de EGF-R, PDGF- R, IGF-R, de la signalisation de MAPK et la surexpression des protéines Gαi résultant ainsi en l’inhibition de l’hyperprolifération des CMLVs des RSH. Ainsi, il peut être suggéré que le C-ANP4-23 pourrait être utilisé comme agent thérapeutique pour le traitement des complications vasculaires associées à l’hypertension et à l’athérosclérose.
Resumo:
CDKL5 (cyclin-dependent kinase-like 5) deficiency disorder (CDD) is a severe X-linked neurodevelopmental disease caused by mutations in the CDKL5 gene, characterized by early-onset epileptic seizures, intellectual disability, motor and visual impairment and respiratory dysregulation. Although pharmacological treatments are used to control seizures, there is currently no cure to ameliorate symptoms for CDD. Albeit delivery of a wild-type copy of the mutated gene to cells represents the most curative approach for a monogenic disease, proof-of-concept studies highlight significant efficacy caveats for brain gene therapy. The major one regards the low efficiency of gene delivery to the CNS by viral vectors. We used a secretable Igk-TATk-CDKL5 protein to enhance the efficiency of a gene therapy for CDD. In view of the properties of the Igk-chain leader sequence, the TATk-CDKL5 protein produced by infected cells is secreted via constitutive secretory pathways. Importantly, due to the transduction property of the TATk peptide, the secreted CDKL5 protein is internalized by cells. We compared the effects of a CDKL5 gene therapy with an IgK-TATk-CDKL5 gene therapy in a Cdkl5 KO mouse model to validate whether the Igk-TATk-CDKL5 approach significantly improve the therapeutic efficacy. We found that, although AAVPHP.B_Igk-TATk-CDKL5 and AAVPHP.B_CDKL5 vectors had similar brain infection efficiency, the AAVPHP.B_Igk-TATk-CDKL5 vector led to a higher CDKL5 protein replacement and Cdkl5 KO mice treated with the AAVPHP.B_Igk-TATk-CDKL5 vector showed a behavioral and neuroanatomical improvement in comparison with Cdkl5 KO mice treated with the AAVPHP.B_CDKL5 vector.
Resumo:
CDKL5 (cyclin-dependent kinase-like 5) deficiency disorder (CDD) is a rare and severe neurodevelopmental disease that mostly affects girls who are heterozygous for mutations in the X-linked CDKL5 gene. The lack of CDKL5 protein expression or function leads to the appearance of numerous clinical features, including early-onset seizures, marked hypotonia, autistic features, and severe neurodevelopmental impairment. Mouse models of CDD, Cdkl5 KO mice, exhibit several behavioral phenotypes that mimic CDD features, such as impaired learning and memory, social interaction, and motor coordination. CDD symptomatology, along with the high CDKL5 expression levels in the brain, underscores the critical role that CDKL5 plays in proper brain development and function. Nevertheless, the improvement of the clinical overview of CDD in the past few years has defined a more detailed phenotypic spectrum; this includes very common alterations in peripheral organ and tissue function, such as gastrointestinal problems, irregular breathing, hypotonia, and scoliosis, suggesting that CDKL5 deficiency compromises not only CNS function but also that of other organs/tissues. Here we report, for the first time, that a mouse model of CDD, the heterozygous Cdkl5 KO (Cdkl5 +/-) female mouse, exhibits cardiac functional and structural abnormalities. The mice also showed QTc prolongation and increased heart rate. These changes correlate with a marked decrease in parasympathetic activity to the heart and in the expression of the Scn5a and Hcn4 voltage-gated channels. Moreover, the Cdkl5 +/- heart shows typical signs of heart aging, including increased fibrosis, mitochondrial dysfunctions, and increased ROS production. Overall, our study not only contributes to the understanding of the role of CDKL5 in heart structure/function but also documents a novel preclinical phenotype for future therapeutic investigation.
Resumo:
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD), a rare neurodevelopmental disease caused by mutations in the X-linked CDKL5 gene, is characterized by early-onset epilepsy, intellectual disability, and autistic features. To date, little is known about the etiology of CDD and no therapies are available. When overactivated in response to neuronal damage and genetic or environmental factors, microglia – the brain macrophages – cause damage to neighboring neurons by producing neurotoxic factors and pro-inflammatory molecules. Importantly, overactivated microglia have been described in several neurodegenerative and neurodevelopmental disorders, suggesting that active neuroinflammation may account for the compromised neuronal survival and/or brain development observed in these pathologies. Recent evidence shows a subclinical chronic inflammatory status in plasma from CDD patients. However, it is unknown whether a similar inflammatory status is present in the brain of CDD patients and, if so, whether it plays a causative or exacerbating role in the pathophysiology of CDD. Here, we show evidence of a chronic microglia overactivation status in the brain of Cdkl5 KO mice, characterized by alterations in microglial cell number/morphology and increased pro-inflammatory gene expression. We found that the neuroinflammatory process is already present in the postnatal period in Cdkl5 KO mice and worsens during aging. Remarkably, by restoring microglia alterations, treatment with luteolin, a natural anti-inflammatory flavonoid, promotes neuronal survival in the brain of Cdkl5 KO mice since it counteracts hippocampal neuron cell death and protects neurons from NMDA-induced excitotoxic damage. In addition, through the restoration of microglia alterations, luteolin treatment also increases hippocampal neurogenesis and restores dendritic spine maturation and dendritic arborization of hippocampal and cortical pyramidal neurons in Cdkl5 KO mice, leading to improved behavioral performance. These findings highlight new insights into the CDD pathophysiology and provide the first evidence that therapeutic approaches aimed at counteracting neuroinflammation could be beneficial in CDD.
Resumo:
Recent studies have shown that phox homology (PX) domains act as phosphoinositide-binding motifs. The majority of PX domains studied show binding to phosphatidylinositol 3-monophosphate (Ptdlns(3)P), an association that allows the host protein to localize to membranes of the endocytic pathway. One issue, however, is whether PX domains may have alternative phosphoinositide binding specificities that could target their host protein to distinct subcellular compartments or allow their allosteric regulation by phosphoinositides other than PtdIns(3)P. It has been reported that the PX domain of sorting nexin 1 (SNX1) specifically binds phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P-3) (Zhong, Q., Lazar, C. S., Tronchere, H., Sato, T., Meerloo, T., Yeo, M., Songyang, Z., Emr, S. D., and Gill, G. N. (2002) Proc. Natl. Acad. Sci. U. S. A. 99,6767-6772). In the present study, we have shown that whereas SNX1 binds PtdIns(3,4,5)P-3 in protein:lipid overlay assays, in liposomes-based assays, binding is observed to PtdIns(3)P and phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P-2) but not to PtdIns(3,4,5)P-3. To address the significance of PtdIns(3,4,5)P-3 binding, we examined the subcellular localization of SNX1 under conditions in which plasma membrane PtdIns(3,4,5)P-3 levels were significantly elevated. Under these conditions, we failed to observe association of SNX1 with this membrane. However, consistent with the binding to PtdIns(3)P and PtdIns(3,5)P-2 being of more physiological significance was the observation that the association of SNX1 with an early endosomal compartment was dependent on a 3-phosphoinositide-binding PX domain and the presence of PtdIns(3)P on this compartment. Finally, we somal association of SNX1 is important for its ability to regulate the targeting of internalized epidermal growth factor receptor for lysosomal degradation.
Resumo:
Integrins and growth factor receptors are important participants in cellular adhesion and migration. The EGF receptor (EGFR) family of tyrosine kinases and the β1-integrin adhesion receptors are of particular interest, given the implication for their involvement in the initiation and progression of tumorigenesis. We used adhesion and chemotaxis assays to further elucidate the relationship between these two families of transmembrane signaling molecules. Specifically, we examined integrin-mediated adhesive and migratory characteristics of the metastatic breast carcinoma cell line MDA-MB-435 in response to stimulation with growth factors that bind to and activate the EGFR or erbB3 in these cells. Although ligand engagement of the EGFR stimulated modest β1-dependent increases in cell adhesion and motility, heregulin-β (HRGβ) binding to the erbB3 receptor initiated rapid and potent induction of breast carcinoma cell adhesion and migration and required dimerization of erbB3 with erbB2. Pharmacologic inhibitors of phosphoinositide 3-OH kinase (PI 3-K) or transient expression of dominant negative forms of PI 3-K inhibited both EGF- and HRGβ-mediated adhesion and potently blocked HRGβ- and EGF-induced cell motility. Our results illustrate the critical role of PI 3-K activity in signaling pathways initiated by the EGFR or erbB3 to up-regulate β1-integrin function.
Resumo:
Purpose: The apoptosis of retinal neurons plays a critical role in the pathogenesis of diabetic retinopathy (DR), but the molecular mechanisms underlying this phenomenon remain unclear. The purpose of this study was to investigate the cellular localization and the expression of microRNA-29b (miR-29b) and its potential target PKR associated protein X (RAX), an activator of the pro-apoptotic RNA-dependent protein kinase (PKR) signaling pathway, in the retina of normal and diabetic rats. Methods: Retinas were obtained from normal and diabetic rats within 35 days after streptozotocin (STZ) injection. In silico analysis indicated that RAX is a potential target of miR-29b. The cellular localization of miR-29b and RAX was assessed by in situ hybridization and immunofluorescence, respectively. The expression levels of miR-29b and RAX mRNA were evaluated by quantitative reverse transcription PCR (qRT-PCR), and the expression of RAX protein was evaluated by western blot. A luciferase reporter assay and inhibition of endogenous RAX were performed to confirm whether RAX is a direct target of miR-29b as predicted by the in silico analysis. Results: We found that miR-29b and RAX are localized in the retinal ganglion cells (RGCs) and the cells of the inner nuclear layer (INL) of the retinas from normal and diabetic rats. Thus, the expression of miR-29b and RAX, as assessed in the retina by quantitative RT-PCR, reflects their expression in the RGCs and the cells of the INL. We also revealed that RAX protein is upregulated (more than twofold) at 3, 6, 16, and 22 days and downregulated (70%) at 35 days, whereas miR-29b is upregulated (more than threefold) at 28 and 35 days after STZ injection. We did not confirm the computational prediction that RAX is a direct target of miR-29b. Conclusions: Our results suggest that RAX expression may be indirectly regulated by miR-29b, and the upregulation of this miRNA at the early stage of STZ-induced diabetes may have a protective effect against the apoptosis of RGCs and cells of the INL by the pro-apoptotic RNA-dependent protein kinase (PKR) signaling pathway.
Resumo:
The persistent nature of addiction has been associated with activity-induced plasticity of neurons within the striatum and nucleus accumbens (NAc). To identify the molecular processes leading to these adaptations, we performed Cre/loxP-mediated genetic ablations of two key regulators of gene expression in response to activity, the Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) and its postulated main target, the cAMP-responsive element binding protein (CREB). We found that acute cocaine-induced gene expression in the striatum was largely unaffected by the loss of CaMKIV. On the behavioral level, mice lacking CaMKIV in dopaminoceptive neurons displayed increased sensitivity to cocaine as evidenced by augmented expression of locomotor sensitization and enhanced conditioned place preference and reinstatement after extinction. However, the loss of CREB in the forebrain had no effect on either of these behaviors, even though it robustly blunted acute cocaine-induced transcription. To test the relevance of these observations for addiction in humans, we performed an association study of CAMK4 and CREB promoter polymorphisms with cocaine addiction in a large sample of addicts. We found that a single nucleotide polymorphism in the CAMK4 promoter was significantly associated with cocaine addiction, whereas variations in the CREB promoter regions did not correlate with drug abuse. These findings reveal a critical role for CaMKIV in the development and persistence of cocaine-induced behaviors, through mechanisms dissociated from acute effects on gene expression and CREB-dependent transcription.
Resumo:
The marine toxin bistratene A (BisA) potently induces cytostasis and differentiation in a variety of systems. Evidence that BisA is a selective activator of protein kinase C (PKC) delta implicates PKC delta signaling in the negative growth-regulatory effects of this agent. The current study further investigates the signaling pathways activated by BisA by comparing its effects with those of the PKC agonist phorbol 12-myristate 13-acetate (PMA) in the IEC-18 intestinal crypt cell line. Both BisA and PMA induced cell cycle arrest in these cells, albeit with different kinetics. While BisA produced sustained cell cycle arrest in G(o)/G(1) and G(2)/M, the effects of PMA were transient and involved mainly a G(o)/G(1), blockade. BisA also produced apoptosis in a proportion of the population, an effect not seen with PMA. Both agents induced membrane translocation/activation of PKC, with BisA translocating only PKC delta and PMA translocating PKC alpha, delta, and epsilon in these cells. Notably, while depletion of PKC alpha, delta, and epsilon abrogated the cell cycle-specific effects of PMA in IEC-18 cells, the absence of these PKC isozymes failed to inhibit BisA-induced G(o)/G(1), and G(2)/M arrest or apoptosis. The cell cycle inhibitory and apoptotic effects of BisA, therefore, appear to be PKC-independent in IEG-18 cells. On the other hand, BisA and PMA both promoted PKC-dependent activation of Erk 1 and 2 in this system. Thus, intestinal epithelial cells respond to BisA through activation of at least two signaling pathways: a PKC delta -dependent pathway, which leads to activation of mitogen-activated protein kinase and possibly cytostasis in the appropriate context, and a PKC-independent pathway, which induces both cell cycle arrest in G(o)/G(1) and G(2)/M and apoptosis through as yet unknown mechanisms. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
In the honeybee the cAMP-dependent signal transduction cascade has been implicated in processes underlying learning and memory, The cAMP-dependent protein kinase (PKA) is the major mediator of cAMP action. To characterize the PKA system in the honeybee brain we cloned a homologue of a PKA catalytic subunit from the honeybee,The deduced amino acid sequence shows 80-94% identity with catalytic subunits of PKA from Drosophila melanogaster, Aplysia californica and mammals. The corresponding gene is predominantly expressed in the mushroom bodies, a structure that is involved in learning and memory processes. However, expression can also be found in the antennal and optic lobes,The level of expression varies within all three neuropiles.
Resumo:
The EphA4 receptor tyrosine kinase regulates the formation of the corticospinal tract (CST), a pathway controlling voluntary movements, and of the anterior commissure (AC), connecting the neocortical temporal robes. To study EphA4 kinase signaling in these processes, we generated mice expressing mutant EphA4 receptors either lacking kinase activity or with severely downregulated kinase activity. We demonstrate that EphA4 is required for CST formation as a receptor for which it requires an active kinase domain. In contrast, the formation of the AC is rescued by kinase-dead EphA4, suggesting that in this structure EphA4 acts as a ligand for which its kinase activity is not required. Unexpectedly, the cytoplasmic sterile-alpha motif (SAM) domain is not required for EphA4 functions. Our findings establish both kinase-dependent and kinase-independent functions of EphA4 in the formation of major axon tracts.
Resumo:
In the pathogenesis of type I diabetes mellitus, activated leukocytes infiltrate pancreatic islets and induce beta cell dysfunction and destruction. Interferon (IFN)-gamma, tumor necrosis factor-alpha and interleukin (IL)-1 beta play important, although not completely defined, roles in these mechanisms. Here, using the highly differentiated beta Tc-Tet insulin-secreting cell line, we showed that IFN-gamma dose- and time-dependently suppressed insulin synthesis and glucose-stimulated secretion. As described previously IFN-gamma, in combination with IL-1 beta, also induces inducible NO synthase expression and apoptosis (Dupraz, P., Cottet, S., Hamburger, F., Dolci, W., Felley-Bosco, E., and Thorens, B. (2000) J. Biol. Chem. 275, 37672--37678). To assess the role of the Janus kinase/signal transducer and activator of transcription (STAT) pathway in IFN-gamma intracellular signaling, we stably overexpressed SOCS-1 (suppressor of cytokine signaling-1) in the beta cell line. We demonstrated that SOCS-1 suppressed cytokine-induced STAT-1 phosphorylation and increased cellular accumulation. This was accompanied by a suppression of the effect of IFN-gamma on: (i) reduction in insulin promoter-luciferase reporter gene transcription, (ii) decrease in insulin mRNA and peptide content, and (iii) suppression of glucose-stimulated insulin secretion. Furthermore, SOCS-1 also suppressed the cellular effects that require the combined presence of IL-1 beta and IFN-gamma: induction of nitric oxide production and apoptosis. Together our data demonstrate that IFN-gamma is responsible for the cytokine-induced defect in insulin gene expression and secretion and that this effect can be completely blocked by constitutive inhibition of the Janus kinase/STAT pathway.
Resumo:
Trypanosoma evansi contains protein kinases capable of phosphorylating endogenous substrates with apparent molecular masses in the range between 20 and 205 kDa. The major phosphopolypeptide band, pp55, was predominantly localized in the particulate fraction. Anti-alpha and anti-beta tubulin monoclonal antibodies recognized pp55 by Western blot analyses, suggesting that this band corresponds to phosphorylated tubulin. Inhibition experiments in the presence of emodin, heparin, and 2,3-bisphosphoglycerate indicated that the parasite tubulin kinase was a casein kinase 2 (CK2)-like activity. GTP, which can be utilized instead of ATP by CK2, stimulated rather than inactivated the phosphorylation of tubulin in the parasite homogenate and particulate fraction. However, GTP inhibited the cytosolic CK2 responsible for phosphorylating soluble tubulin and other soluble substrates. Casein and two selective peptide substrates, P1 (RRKDLHDDEEDEAMSITA) for casein kinase (CK1) and P2 (RRRADDSDDDDD) for CK2, were recognized as substrates in T. evansi. While the enzymes present in the soluble fraction predominantly phosphorylated P1, P2 was preferentially labeled in the particulate fractions. These results demonstrated the existence of CK1-like and CK2-like activities primarily located in the parasite cytosolic and membranous fractions, respectively. Histone II-A and kemptide (LRRASVA) also behaved as suitable substrates, implying the existence of other Ser/Thr kinases in T. evansi. Cyclic AMP only increased the phosphorylation of histone II-A and kemptide in the cytosol, demonstrating the existence of soluble cAMP-dependent protein kinase-like activities in T. evansi. However, no endogenous substrates for this enzyme were identified in this fraction. Further evidences were obtained by using PKI (6-22), a reported inhibitor of the catalytic subunit of mammalian cAMP-dependent protein kinases, which specifically hindered the cAMP-dependent phosphorylation of histone II-A and kemptide in the parasite soluble fraction. Since the sum of the values obtained in the parasite cytosolic and particulate fractions were always higher than the values observed in the total T. evansi lysate, the kinase activities examined here appeared to be inhibited in the original extract.