989 resultados para Phenol red dye
Resumo:
In the present study dye sensitized solar cells (DSSCs) have been fabricated with a tri-layer photo anode consisting of hydrothermally prepared titania nano tubes (TNT) having a diameter of 9-10 nm and length of several micrometers as outer layer, P25 TiO2 powder as transparent light absorbing middle layer and a compact TiO2 inner layer to improve the adhesion of different layers on a transparent conducting oxide coated substrate. In comparison to cells fabricated using TNTs or P25 alone, the tri-layer DSSCs exhibit an enhanced efficiency of 7.15% with a current density of 17.12 mA cm(-2) under AM 1.5 illumination. The enhancement is attributed to the light scattering generated by TNTs aggregates, reduction in electron transport resistance at the TiO2/dye/electrolyte interface and an improvement in electron life-time. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Red mud is a waste by-product generated during the processing of bauxite, the most common ore of aluminium. With the presence of ferric oxide, high surface area, resistance to poisoning and low cost, red mud made itself a good alternative to the existing commercial automobile catalyst. The cascading of dielectric barrier discharge plasma with red mud improved the NOX removal from diesel engine exhaust significantly. The DeNO(X) efficiency with discharge plasma was 74% and that with red mud was 31%. The efficiency increased to 92% when plasma was cascaded with red mud catalyst operating at a temperature of 400 degrees C. The NOX removal was dominated by NO2 removal. The studies were conducted at different temperatures and the results were discussed.
Resumo:
By employing a thermal oxidation strategy, we have grown large area porous Cu2O from Cu foil. CuO nanorods are grown by heating Cu which were in turn heated in an argon atmosphere to obtain a porous Cu2O layer. The porous Cu2O layer is superhydrophobic and exhibits red luminescence. In contrast, Cu2O obtained by direct heating, is hydrophobic and exhibits yellow luminescence. Two more luminescence bands are observed in addition to red and yellow luminescence, corresponding to the recombination of free and bound excitons. Over all, the porous Cu2O obtained from Cu via CuO nanorods, can serve as a superhydrophobic luminescence/phosphor material.
Resumo:
Recently, we have reported theoretical studies on the rate of energy transfer from an electronically excited molecule to graphene. It was found that graphene is a very efficient quencher of the electronically excited states and that the rate infinity z(-4). The process was found to be effective up to 30 nm which is well beyond the traditional FRET limit. In this report, we study the transfer of an amount of energy (h) over bar Omega from a dye molecule to doped graphene. We find a crossover of the distance dependence of the rate from z(-4) to exponential as the Fermi level is increasingly shifted into the conduction band, with the crossover occurring at a shift of the Fermi level by an amount (h) over bar Omega/2.
Resumo:
In the present study, the effect of iodine concentration on the photovoltaic properties of dye sensitized solar cells (DSSC) based on TiO2 nanoparticles for three different ratios of lithium iodide (LiI) and iodine (I-2) has been investigated. The electron transport properties and interfacial recombination kinetics have been evaluated by electrochemical impedance spectroscopy (EIS). It is found that increasing the concentration of lithium iodide for all ratios of iodine and lithium iodide decreases the open-circuit voltage (V-oc) whereas short circuit current density (J(sc)) and fill factor (FF) shows improvement. The reduction in V-oc and increment in J(sc) is ascribed to the higher concentration of absorptive Li+ cations which shifts the conduction band edge of TiO2 positively. The increase in FF is due to the reduction in electron transport resistance (R-omega) of the cell. In addition for all the ratios of LiI/I-2 increasing the concentration of I-2 decreases the V-oc which is attributed to the increased recombination with tri-iodide ions (I-3(-)) as verified from the low recombination resistance (R-k) and electron lifetime (tau) values obtained by EIS analysis. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In a previous study of the properties of red blood cells (RBC) trapped in an optical tweezers trap, an increase in the spectrum of Brownian fluctuations for RBCs from a Plasmodium falciparum culture (due to increased rigidity) compared with normal RBCs was measured. A bystander effect was observed, whereby RBCs actually hosting the parasite had an effect on the physical properties of remaining non-hosting RBCs. The distribution of corner frequency (f(c)) in the power spectrum of single RBCs held in an optical tweezers trap was studied. Two tests were done to confirm the bystander effect. In the first, RBCs from an infected culture were separated into hosting and non-hosting RBCs. In the second, all RBCs were removed from the infected culture, and normal RBCs were incubated in the spent medium. The trapping environment was the same for all measurements so only changes in the properties of RBCs were measured. In the first experiment, a similar and statistically significant increase was measured both for hosting and non-hosting RBCs. In the second experiment, normal RBCs incubated in spent medium started to become rigid after a few hours and showed complete changes (comparable with RBCs from the infected culture) after 24 h. These experiments provide direct evidence of medium-induced changes in the properties of RBCs in an infected culture, regardless of whether the RBCs actually host the parasite.
Resumo:
Novel composite cyclodextrin (CD)-CaCO3 spherical porous microparticles have been synthesized through Ca2+-CD complex formation, which influences the crystal growth of CaCO3. The CDs are entrapped and distributed uniformly in the matrix of CaCO3 microparticles during crystallization. The hydrophobic fluorescent molecules coumarin and Nile red (NR) are efficiently encapsulated into these composite CD-CaCO3 porous particles through supramolecular inclusion complexation between entrapped CDs and hydrophobic molecules. Thermogravimetric (TGA) and infrared spectroscopy (IR) analysis of composite CD-CaCO3 particles reveals the presence of large CDs and their strong interaction with calcium carbonate nanoparticles. The resulting composite CD-CaCO3 microparticles are utilized as sacrificial templates for preparation of CD-modified layer-by-layer (LbL) capsules. After dissolution of the carbonate core, CDs are retained in the interior of the capsules in a network fashion and assist in the encapsulation of hydrophobic molecules. The efficient encapsulation of the hydrophobic fluorescent dye, coumarin, was successfully demonstrated using CD-modified capsules. In vitro release of the encapsulated coumarin from the CD-CaCO3 and CD-modified capsules has been demonstrated.
Resumo:
We have analyzed the characteristics of electrodes made of TiO2 nanotubes, microspheres and commercially available nanoparticles for dye sensitized solar cell. The morphology of the electrodes and the formation of aggregates have been analyzed by scanning electron microscopy and surface profiling technique. The concentration of Ti3+ type impurity state on the surface of these electrodes is quantified by X-ray photoelectron spectroscopy. Micro structural properties have been characterized by Brunauer, Emmett and Teller method The optical properties of the electrodes such as band gap energy, the type of band formation and the diffuse reflectance are evaluated by UV-Visible spectroscopy. The photovoltaic characteristics of dye solar cell made of these electrodes have been evaluated and it is found that the characteristics of the TiO2 film alone can alter the overall conversion efficiency to a great extent. Additional analysis using electrochemical impedance spectroscopy has been carried out to probe the electron transport properties and charge collection efficiency of these electrodes.
Resumo:
Extending the previous work of Lan et al. J. Chem. Phys., 122, 224315 (2005)], a multi-state potential model for the H atom photodissociation is presented. All three ``disappearing coordinates'' of the departing H atom have been considered. Ab initio CASSCF computations have been carried out for the linear COH geometry of C-2v symmetry, and for several COH angles with the OH group in the ring plane and also perpendicular to the ring plane. By keeping the C6H5O fragment frozen in a C-2v-constrained geometry throughout, we have been able to apply symmetry-based simplifications in the constructions of a diabatic model. This model is able to capture the overall trends of twelve adiabats at both torsional limits for a wide range of COH bend angles.
Resumo:
Cu2CoSnS4 (CCTS) quaternary semiconducting nanoparticles with size distribution from 20 nm to 60 nm were synthesized by one-pot low temperature time and surfactant dependent hydrothermal route. Nanoparticles were characterized structurally and optically. Excitation dependent fluorescence exhibited a dynamic stoke shift referring to the Red-Edge-Effect with peak shifting by a greater magnitude (>100 nm) towards red side, in all the samples. Hybrid devices, fabricated from CCTS nanoparticle inorganic counterparts benefitting from the conjugation of organic P3HT polymer matrix, were demonstrated for photodetection under infra-red and A. M 1.5 solar light illuminations. Faster rise and decay constants of 37 ms and 166 ms, with one order photocurrent amplification from 1.6 x 10(-6) A in the dark to 6.55 x 10(-5) A, upon the 18.50 mW cm(-2) IR lamp illumination, make CCTS a potential candidate for photodetector and photovoltaic applications. (C) 2013 AIP Publishing LLC.
Resumo:
Oxidovanadium(IV) complexes VO(L-1)(phen)]Cl (1) and VO(L-2)(L-3)]Cl (2), in which HL1 is 2-{(benzimidazol-2-yl)methylimino]-methyl}phenol (sal-ambmz), HL2 is 2-({1-(anthracen-9-yl)methyl]-benzimidazol-2-yl}methylimino)-met hyl]phenol (sal-an-ambmz), phen is 1,10-phenanthroline and L-3 is dipyrido3,2-a:2,3-c]phenazine (dppz) conjugated to a Gly-Gly-OMe dipeptide moiety, were prepared, characterized, and their DNA binding, photoinduced DNA-cleavage, and photocytotoxic properties were studied. Fluorescence microscopy studies were performed by using complex 2 in HeLa and HaCaT cells. Complex 1, structurally characterized by X-ray crystallography, has a vanadyl group in VO2N4 core with the VO2+ moiety bonded to N,N-donor phen and a N,N,O-donor Schiff base. Complex 2, having an anthracenyl fluorophore, showed fluorescence emission bands at 397, 419, and 443nm. The complexes are redox-active exhibiting the V(IV)/V(III) redox couple near -0.85V versus SCE in DMF 0.1M tetrabutylammonium perchlorate (TBAP). Complex 2, having a dipeptide moiety, showed specific binding towards poly(dAdT)(2) sequence. The dppz-Gly-Gly-OMe complex showed significant DNA photocleavage activity in red light of 705nm through a hydroxyl radical ((OH)-O-.) pathway. Complex 2 showed photocytotoxicity in HaCaT and HeLa cells in visible light (400-700nm) and red light (620-700nm), however, the complex was less toxic in the dark. Fluorescence microscopy revealed the localization of complex 2 primarily in mitochondria. Apoptosis was found to occur inside mitochondria (intrinsic pathway) caused by ROS generation.
Resumo:
This paper presents the case history of the construction of a 3 m high embankment on the geocell foundation over the soft settled red mud. Red mud is a waste product from the Bayer process of Aluminum industry. Geotechnical problems of the site, the design of the geocell foundation based on experimental investigation and the construction sequences of the geocell foundations in the field are discussed in the paper. Based on the experimental studies, an analytical model was also developed to estimate the load carrying capacity of the soft clay bed reinforced with geocell and combination of geocell and geogrid. The results of the experimental and analytical studies revealed that the use of combination of geocell and the geogrid is always beneficial than using the geocell alone. Hence, the combination of geocell and geogrid was recommended to stabilize the embankment base. The reported embankment is located in Lanjigharh (Orissa) in India. Construction of the embankment on the geocell foundation has already been completed. The constructed embankmenthas already sustained two monsoon rains without any cracks and seepage. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Rapid and facile synthesis of similar to 7 nm and similar to 100-400 nm nano-structures of anatase titania is achieved by exploiting the chemical nature of solvents through a microwave based approach. After using these nanostructures as a photoanode in dye-sensitized solar cells, a modest yet appreciable efficiency of 6.5% was achieved under the illumination of AM 1.5 G one sun (100 mW cm(-2)).
Resumo:
Glucose-appended photocytotoxic iron(III) complexes of a tridentate Schiff base phenolate ligand Fe(bpyag) (L)] (NO3) (1-3), where bpyag is N,N-bis(2- pyridylmethyl)-2-aminoethyl-beta-D-glucopyranoside and H2L is 3-(2-hydroxyphenylimino)-1-phenylbutan-1-one (H(2)phap) in 1, 3-(2-hydroxyphenylimino)-9-anthrylbutan-1-one (H(2)anap) 2, and 3- (2-hydroxyphenylimino)-1-pyrenylbutan-1-one (H(2)pyap) in 3, were synthesized and characterized. The complex Fe(dpma)(anapn(NO3) (4), having bis-(2-pyridylmethyl)benzylamine (dpma), in which the glucose moiety of bpyag is substituted by a phenyl group, was used as a control, and the complex Fe(dpma)(anap)](PF6) (4a) was structurally characterized by X-ray crystallography. The structure shows a FeN4O2 core in a distorted octahedral geometry. The high-spin iron(III) complexes with magnetic moment value of similar to 5.9 mu(B) showed a low-energy phenolate-to-Fe(III) charge-transfer (CT) absorption band as a shoulder near 500 nm with a tail extending to 700 nm and an irreversible Fe(III)-Fe(II) redox couple near -0.6 V versus saturated calomel electrode. The complexes are avid binders to calf thymus DNA and showed photocleavage of supercoiled pUC19 DNA in red (647 nm) and green (532 nm) light. Complexes 2 and 3 displayed significant photocytotoxicity in red light, with an IC50 value of similar to 20 mu M in HeLa and HaCaT cells, and no significant toxicity in dark. The cell death is via an apoptotic pathway, by generation of reactive oxygen species. Preferential internalization of the carbohydrate-appended complexes 2 and 3 was evidenced in HeLa cells as compared to the control complex 4. A 5-fold increase in the cellular uptake was observed for the active complexes in HeLa cells. The photophysical properties of the complexes are rationalized from the density functional theory calculations.