991 resultados para Parsimony analisys of endemicity
Resumo:
OBJECTIVE To determine the prevalence of methicillin-resistant Staphylococcus aureus (MRSA) nasal colonization in hemodialysis patients and to analyze the cost-effectiveness of our screening approach compared with an alternative strategy. DESIGN Screening study and cost-effectiveness analysis. METHODS Analysis of twice-yearly MRSA prevalence studies conducted in the hemodialysis unit of a 950-bed tertiary care hospital from January 1, 2004, through December 31, 2013. For this purpose, nasal swab samples were cultured on MRSA screening agar (mannitol-oxacillin biplate). RESULTS There were 20 mass screenings during the 10-year study period. We identified 415 patients participating in at least 1 screening, with an average of 4.5 screenings per patient. Of 415 screened patients, 15 (3.6%) were found to be MRSA carriers. The first mass screening in 2004 yielded the highest percentage of MRSA (6/101 [6%]). Only 7 subsequent screenings revealed new MRSA carriers, whereas 4 screenings confirmed previously known carriers, and 8 remained negative. None of the carriers developed MRSA bacteremia during the study period. The total cost of our screening approach, that is, screening and isolation costs, was US $93,930. The total cost of an alternative strategy (ie, no mass screening administered) would be equivalent to costs of isolation of index cases and contact tracing was estimated to be US $5,382 (difference, US $88,548). CONCLUSIONS In an area of low MRSA endemicity (<5%), regular nasal screenings of a high-risk population yielded a low rate of MRSA carriers. Twice-yearly MRSA screening of dialysis patients is unlikely to be cost-effective if MRSA prevalence is low. Infect. Control Hosp. Epidemiol. 2015;00(0):1-4.
Resumo:
BACKGROUND The distribution of the enzymopathy glucose-6-phosphate dehydrogenase (G6PD) deficiency is linked to areas of high malaria endemicity due to its association with protection from disease. G6PD deficiency is also identified as the cause of severe haemolysis following administration of the anti-malarial drug primaquine and further use of this drug will likely require identification of G6PD deficiency on a population level. Current conventional methods for G6PD screening have various disadvantages for field use. METHODS The WST8/1-methoxy PMS method, recently adapted for field use, was validated using a gold standard enzymatic assay (R&D Diagnostics Ltd ®) in a study involving 235 children under five years of age, who were recruited by random selection from a cohort study in Tororo, Uganda. Blood spots were collected by finger-prick onto filter paper at routine visits, and G6PD activity was determined by both tests. Performance of the WST8/1-methoxy PMS test under various temperature, light, and storage conditions was evaluated. RESULTS The WST8/1-methoxy PMS assay was found to have 72% sensitivity and 98% specificity when compared to the commercial enzymatic assay and the AUC was 0.904, suggesting good agreement. Misclassifications were at borderline values of G6PD activity between mild and normal levels, or related to outlier haemoglobin values (<8.0 gHb/dl or >14 gHb/dl) associated with ongoing anaemia or recent haemolytic crises. Although severe G6PD deficiency was not found in the area, the test enabled identification of low G6PD activity. The assay was found to be highly robust for field use; showing less light sensitivity, good performance over a wide temperature range, and good capacity for medium-to-long term storage. CONCLUSIONS The WST8/1-methoxy PMS assay was comparable to the currently used standard enzymatic test, and offers advantages in terms of cost, storage, portability and use in resource-limited settings. Such features make this test a potential key tool for deployment in the field for point of care assessment prior to primaquine administration in malaria-endemic areas. As with other G6PD tests, outlier haemoglobin levels may confound G6PD level estimation.
Resumo:
We agree with the authors' attitude toward fostering the principle of parsimony (also known as Ockham's razor(3) ) - whereby no unnecessary entities/labels should be posited whenever a phenomenon can be reduced to a set of less complex constituents. Nevertheless, we take issue with some of the shortcuts which we feel they engaged in along their line of reasoning. This article is protected by copyright. All rights reserved.
Resumo:
Background. About a third of the world’s population is infected with tuberculosis (TB) with sub-Saharan Africa being the worst hit. Uganda is ranked 16th among the countries with the biggest TB burden. The burden in children however has not been determined. The burden of TB has been worsened by the advent of HIV and TB is the leading cause of mortality in HIV infected individuals. Development of TB disease can be prevented if TB is diagnosed during its latent stage and treated with isoniazid. For over a century, latent TB infection (LTBI) was diagnosed using the Tuberculin Skin Test (TST). New interferon gamma release assays (IGRA) have been approved by FDA for the diagnosis of LTBI and adult studies have shown that IGRAs are superior to the TST but there have been few studies in children especially in areas of high TB and HIV endemicity. ^ Objective. The objective of this study was to examine whether the IGRAs had a role in LTBI diagnosis in HIV infected children in Uganda. ^ Methods. Three hundred and eighty one (381) children were recruited at the Baylor College of Medicine-Bristol Meyers Squibb Children’s Clinical Center of Excellence at Mulago Hospital, Kampala, Uganda between March and August 2010. All the children were subjected to a TST and T-SPOT ®.TB test which was the IGRA chosen for this study. Sputum examination and chest x-rays were also done to rule out active TB. ^ Results. There was no statistically significant difference between the tests. The agreement between the two assays was 95.9% and the kappa statistic was 0.7 (95% CI: 0.55–0.85, p-value<0.05) indicating a substantial or good agreement. The TST was associated with older age and higher weight for age z-scores but the T-SPOT®. TB was not. Both tests were associated with history of taking anti-retroviral therapy (ART). ^ Conclusion. Before promoting use of IGRAs in children living in HIV/TB endemic countries, more research needs to be done. ^
Resumo:
The origins for this work arise in response to the increasing need for biologists and doctors to obtain tools for visual analysis of data. When dealing with multidimensional data, such as medical data, the traditional data mining techniques can be a tedious and complex task, even to some medical experts. Therefore, it is necessary to develop useful visualization techniques that can complement the expert’s criterion, and at the same time visually stimulate and make easier the process of obtaining knowledge from a dataset. Thus, the process of interpretation and understanding of the data can be greatly enriched. Multidimensionality is inherent to any medical data, requiring a time-consuming effort to get a clinical useful outcome. Unfortunately, both clinicians and biologists are not trained in managing more than four dimensions. Specifically, we were aimed to design a 3D visual interface for gene profile analysis easy in order to be used both by medical and biologist experts. In this way, a new analysis method is proposed: MedVir. This is a simple and intuitive analysis mechanism based on the visualization of any multidimensional medical data in a three dimensional space that allows interaction with experts in order to collaborate and enrich this representation. In other words, MedVir makes a powerful reduction in data dimensionality in order to represent the original information into a three dimensional environment. The experts can interact with the data and draw conclusions in a visual and quickly way.
Resumo:
Association between Y chromosome haplotype variation and alcohol dependence and related personality traits was investigated in a large sample of psychiatrically diagnosed Finnish males. Haplotypes were constructed for 359 individuals using alleles at eight loci (seven microsatellite loci and a nucleotide substitution in the DYZ3 alphoid satellite locus). A cladogram linking the 102 observed haplotype configurations was constructed by using parsimony with a single-step mutation model. Then, a series of contingency tables nested according to the cladogram hierarchy were used to test for association between Y haplotype and alcohol dependence. Finally, using only alcohol-dependent subjects, we tested for association between Y haplotype and personality variables postulated to define subtypes of alcoholism—antisocial personality disorder, novelty seeking, harm avoidance, and reward dependence. Significant association with alcohol dependence was observed at three Y haplotype clades, with significance levels of P = 0.002, P = 0.020, and P = 0.010. Within alcohol-dependent subjects, no relationship was revealed between Y haplotype and antisocial personality disorder, novelty seeking, harm avoidance, or reward dependence. These results demonstrate, by using a fully objective association design, that differences among Y chromosomes contribute to variation in vulnerability to alcohol dependence. However, they do not demonstrate an association between Y haplotype and the personality variables thought to underlie the subtypes of alcoholism.
Resumo:
In the maximum parsimony (MP) and minimum evolution (ME) methods of phylogenetic inference, evolutionary trees are constructed by searching for the topology that shows the minimum number of mutational changes required (M) and the smallest sum of branch lengths (S), respectively, whereas in the maximum likelihood (ML) method the topology showing the highest maximum likelihood (A) of observing a given data set is chosen. However, the theoretical basis of the optimization principle remains unclear. We therefore examined the relationships of M, S, and A for the MP, ME, and ML trees with those for the true tree by using computer simulation. The results show that M and S are generally greater for the true tree than for the MP and ME trees when the number of nucleotides examined (n) is relatively small, whereas A is generally lower for the true tree than for the ML tree. This finding indicates that the optimization principle tends to give incorrect topologies when n is small. To deal with this disturbing property of the optimization principle, we suggest that more attention should be given to testing the statistical reliability of an estimated tree rather than to finding the optimal tree with excessive efforts. When a reliability test is conducted, simplified MP, ME, and ML algorithms such as the neighbor-joining method generally give conclusions about phylogenetic inference very similar to those obtained by the more extensive tree search algorithms.
Resumo:
Homobasidiomycete fungi display many complex fruiting body morphologies, including mushrooms and puffballs, but their anatomical simplicity has confounded efforts to understand the evolution of these forms. We performed a comprehensive phylogenetic analysis of homobasidiomycetes, using sequences from nuclear and mitochondrial ribosomal DNA, with an emphasis on understanding evolutionary relationships of gilled mushrooms and puffballs. Parsimony-based optimization of character states on our phylogenetic trees suggested that strikingly similar gilled mushrooms evolved at least six times, from morphologically diverse precursors. Approximately 87% of gilled mushrooms are in a single lineage, which we call the “euagarics.” Recently discovered 90 million-year-old fossil mushrooms are probably euagarics, suggesting that (i) the origin of this clade must have occurred no later than the mid-Cretaceous and (ii) the gilled mushroom morphology has been maintained in certain lineages for tens of millions of years. Puffballs and other forms with enclosed spore-bearing structures (Gasteromycetes) evolved at least four times. Derivation of Gasteromycetes from forms with exposed spore-bearing structures (Hymenomycetes) is correlated with repeated loss of forcible spore discharge (ballistospory). Diverse fruiting body forms and spore dispersal mechanisms have evolved among Gasteromycetes. Nevertheless, it appears that Hymenomycetes have never been secondarily derived from Gasteromycetes, which suggests that the loss of ballistospory has constrained evolution in these lineages.
Resumo:
Homing endonuclease genes show super-Mendelian inheritance, which allows them to spread in populations even when they are of no benefit to the host organism. To test the idea that regular horizontal transmission is necessary for the long-term persistence of these genes, we surveyed 20 species of yeasts for the ω-homing endonuclease gene and associated group I intron. The status of ω could be categorized into three states (functional, nonfunctional, or absent), and status was not clustered on the host phylogeny. Moreover, the phylogeny of ω differed significantly from that of the host, strong evidence of horizontal transmission. Further analyses indicate that horizontal transmission is more common than transposition, and that it occurs preferentially between closely related species. Parsimony analysis and coalescent theory suggest that there have been 15 horizontal transmission events in the ancestry of our yeast species, through simulations indicate that this value is probably an underestimate. Overall, the data support a cyclical model of invasion, degeneration, and loss, followed by reinvasion, and each of these transitions is estimated to occur about once every 2 million years. The data are thus consistent with the idea that frequent horizontal transmission is necessary for the long-term persistence of homing endonuclease genes, and further, that this requirement limits these genes to organisms with easily accessible germ lines. The data also show that mitochondrial DNA sequences are transferred intact between yeast species; if other genes do not show such high levels of horizontal transmission, it would be due to lack of selection, rather than lack of opportunity.
Resumo:
Sequence analysis based on multiple isolates representing essentially all genera and species of the classic family Volvocaeae has clarified their phylogenetic relationships. Cloned internal transcribed spacer sequences (ITS-1 and ITS-2, flanking the 5.8S gene of the nuclear ribosomal gene cistrons) were aligned, guided by ITS transcript secondary structural features, and subjected to parsimony and neighbor joining distance analysis. Results confirm the notion of a single common ancestor, and Chlamydomonas reinharditii alone among all sequenced green unicells is most similar. Interbreeding isolates were nearest neighbors on the evolutionary tree in all cases. Some taxa, at whatever level, prove to be clades by sequence comparisons, but others provide striking exceptions. The morphological species Pandorina morum, known to be widespread and diverse in mating pairs, was found to encompass all of the isolates of the four species of Volvulina. Platydorina appears to have originated early and not to fall within the genus Eudorina, with which it can sometimes be confused by morphology. The four species of Pleodorina appear variously associated with Eudorina examples. Although the species of Volvox are each clades, the genus Volvox is not. The conclusions confirm and extend prior, more limited, studies on nuclear SSU and LSU rDNA genes and plastid-encoded rbcL and atpB. The phylogenetic tree suggests which classical taxonomic characters are most misleading and provides a framework for molecular studies of the cell cycle-related and other alterations that have engendered diversity in both vegetative and sexual colony patterns in this classical family.
Resumo:
Homeodomain proteins are transcription factors that play a critical role in early development in eukaryotes. These proteins previously have been classified into numerous subgroups whose phylogenetic relationships are unclear. Our phylogenetic analysis of representative eukaryotic sequences suggests that there are two major groups of homeodomain proteins, each containing sequences from angiosperms, metazoa, and fungi. This result, based on parsimony and neighbor-joining analyses of primary amino acid sequences, was supported by two additional features of the proteins. The two protein groups are distinguished by an insertion/deletion in the homeodomain, between helices I and II. In addition, an amphipathic alpha-helical secondary structure in the region N terminal of the homeodomain is shared by angiosperm and metazoan sequences in one group. These results support the hypothesis that there was at least one duplication of homeobox genes before the origin of angiosperms, fungi, and metazoa. This duplication, in turn, suggests that these proteins had diverse functions early in the evolution of eukaryotes. The shared secondary structure in angiosperm and metazoan sequences points to an ancient conserved functional domain.
Resumo:
Phylogenetic analyses are increasingly used in attempts to clarify transmission patterns of human immunodeficiency virus type 1 (HIV-1), but there is a continuing discussion about their validity because convergent evolution and transmission of minor HIV variants may obscure epidemiological patterns. Here we have studied a unique HIV-1 transmission cluster consisting of nine infected individuals, for whom the time and direction of each virus transmission was exactly known. Most of the transmissions occurred between 1981 and 1983, and a total of 13 blood samples were obtained approximately 2-12 years later. The p17 gag and env V3 regions of the HIV-1 genome were directly sequenced from uncultured lymphocytes. A true phylogenetic tree was constructed based on the knowledge about when the transmissions had occurred and when the samples were obtained. This complex, known HIV-1 transmission history was compared with reconstructed molecular trees, which were calculated from the DNA sequences by several commonly used phylogenetic inference methods [Fitch-Margoliash, neighbor-joining, minimum-evolution, maximum-likelihood, maximum-parsimony, unweighted pair group method using arithmetic averages (UPGMA), and a Fitch-Margoliash method assuming a molecular clock (KITSCH)]. A majority of the reconstructed trees were good estimates of the true phylogeny; 12 of 13 taxa were correctly positioned in the most accurate trees. The choice of gene fragment was found to be more important than the choice of phylogenetic method and substitution model. However, methods that are sensitive to unequal rates of change performed more poorly (such as UPGMA and KITSCH, which assume a constant molecular clock). The rapidly evolving V3 fragment gave better reconstructions than p17, but a combined data set of both p17 and V3 performed best. The accuracy of the phylogenetic methods justifies their use in HIV-1 research and argues against convergent evolution and selective transmission of certain virus variants.
Resumo:
The genes for the protein synthesis elongation factors Tu (EF-Tu) and G (EF-G) are the products of an ancient gene duplication, which appears to predate the divergence of all extant organismal lineages. Thus, it should be possible to root a universal phylogeny based on either protein using the second protein as an outgroup. This approach was originally taken independently with two separate gene duplication pairs, (i) the regulatory and catalytic subunits of the proton ATPases and (ii) the protein synthesis elongation factors EF-Tu and EF-G. Questions about the orthology of the ATPase genes have obscured the former results, and the elongation factor data have been criticized for inadequate taxonomic representation and alignment errors. We have expanded the latter analysis using a broad representation of taxa from all three domains of life. All phylogenetic methods used strongly place the root of the universal tree between two highly distinct groups, the archaeons/eukaryotes and the eubacteria. We also find that a combined data set of EF-Tu and EF-G sequences favors placement of the eukaryotes within the Archaea, as the sister group to the Crenarchaeota. This relationship is supported by bootstrap values of 60-89% with various distance and maximum likelihood methods, while unweighted parsimony gives 58% support for archaeal monophyly.
Resumo:
The origin of land vertebrates was one of the major transitions in the history of vertebrates. Yet, despite many studies that are based on either morphology or molecules, the phylogenetic relationships among tetrapods and the other two living groups of lobe-finned fishes, the coelacanth and the lungfishes, are still unresolved and debated. Knowledge of the relationships among these lineages, which originated back in the Devonian, has profound implications for the reconstruction of the evolutionary scenario of the conquest of land. We collected the largest molecular data set on this issue so far, about 3,500 base pairs from seven species of the large 28S nuclear ribosomal gene. All phylogenetic analyses (maximum parsimony, neighbor-joining, and maximum likelihood) point toward the hypothesis that lungfishes and coelacanths form a monophyletic group and are equally closely related to land vertebrates. This evolutionary hypothesis complicates the identification of morphological or physiological preadaptations that might have permitted the common ancestor of tetrapods to colonize land. This is because the reconstruction of its ancestral conditions would be hindered by the difficulty to separate uniquely derived characters from shared derived characters in the coelacanth/lungfish and tetrapod lineages. This molecular phylogeny aids in the reconstruction of morphological evolutionary steps by providing a framework; however, only paleontological evidence can determine the sequence of morphological acquisitions that allowed lobe-finned fishes to colonize land.
Resumo:
Evolutionary theory predicts the recent spread of primate immunodeficiency viruses (PIVs) to new human populations to be accompanied by positive selection in response to new host environments and/or by random genetic drift. I assess evidence for positive selection in human and chimpanzee PIVs type I (PIV1s), using ratios of synonymous to nonsynonymous nucleotide change based on branch lengths and outgroup rooting. Ratios are smaller for PIV1s from humans than for PIV1 from a chimpanzee for the pol, gag, and env glycoprotein 120 (gp120) regions, indicating greater effects of positive selection in PIV1s from humans. Parsimony-based relative rate tests for amino acid changes showed significant differences between PIV1s from humans and chimpanzees in 18 of 48 pairwise comparisons, with all 18 showing faster rates of change in PIV1s from humans. This study indicates that in some instances, the recent evolution of human PIV1s follows a speciational pattern, in which increased diversification of taxa is correlated with greater amounts of character change appearing and being maintained through time. This extends the generality of the speciational pattern to a group of organisms (viruses) having the fastest known rates of anagenetic change for nucleotide characters and indicates that comprehensive understanding of PIV1 evolution requires consideration of both anagenetic change within viral lineages and the relative historical success of different viral clades. Phylogenetic analyses show that neither PIV1s infecting humans nor those infecting chimpanzees represent monophyletic groups and suggest multiple host-species shifts for PIV1s.