748 resultados para Parallel pathways


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenotypic convergence is a widespread and well-recognized evolutionary phenomenon. However, the responsible molecular mechanisms remain often unknown mainly because the genes involved are not identified. A well-known example of physiological convergence is the C4 photosynthetic pathway, which evolved independently more than 45 times [1]. Here, we address the question of the molecular bases of the C4 convergent phenotypes in grasses (Poaceae) by reconstructing the evolutionary history of genes encoding a C4 key enzyme, the phosphoenolpyruvate carboxylase (PEPC). PEPC genes belong to a multigene family encoding distinct isoforms of which only one is involved in C4 photosynthesis [2]. By using phylogenetic analyses, we showed that grass C4 PEPCs appeared at least eight times independently from the same non-C4 PEPC. Twenty-one amino acids evolved under positive selection and converged to similar or identical amino acids in most of the grass C4 PEPC lineages. This is the first record of such a high level of molecular convergent evolution, illustrating the repeatability of evolution. These amino acids were responsible for a strong phylogenetic bias grouping all C4 PEPCs together. The C4-specific amino acids detected must be essential for C4 PEPC enzymatic characteristics, and their identification opens new avenues for the engineering of the C4 pathway in crops.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The innate immune system has evolved the capacity to detect specific pathogens and to interrogate cell and tissue integrity in order to mount an appropriate immune response. Loss of homeostasis in the endoplasmic reticulum (ER) triggers the ER-stress response, a hallmark of many inflammatory and infectious diseases. The IRE1/XBP1 branch of the ER-stress signaling pathway has been recently shown to regulate and be regulated by innate immune signaling pathways in both the presence and absence of ER-stress. By contrast, innate immune pathways negatively affect the activation of two other branches of the ER-stress response as evidenced by reduced expression of the pro-apoptotic transcription factor CHOP. Here we will discuss how innate immune pathways and ER-signaling intersect to regulate the intensity and duration of innate immune responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The central and peripheral nervous systems are involved in multiple age-dependent neurological deficits that are often attributed to alterations in function of myelinating glial cells. However, the molecular events that underlie the age-related decline of glial cell function are unknown. We used Schwann cells as a model to study biological processes affected in glial cells by aging. We comprehensively profiled gene expression of the Schwann cellrich mouse sciatic nerve throughout life, from day of birth until senescence (840 days of age). We combined the aging data with the microarray transcriptional data obtained using nerves isolated from Schwann cell-specific neuropathy-inducing mutants MPZCre/+/Lpin1fE2−3/fE2−3 , MPZCre/+/ScapfE1/fE1 and Pmp22-null mice. The majority of age related transcripts were also affected in the analyzed mouse models of neuropathy (54.4%) and in development (59.5%) indicating a high level of overlapping in implicated molecular pathways. We observed that compared to peripheral nerve development, dynamically changing expression profiles in aging have opposite (anticorrelated) orientation while they copy the orientation of transcriptional changes observed in analyzed neuropathy models. Subsequent clustering and biological annotation of dynamically changing transcripts revealed that the processes most significantly deregulated in aging include inflammatory/immune response and lipid biosynthesis/metabolism. Importantly, the changes in these pathways were also observed in myelinated oligodendrocyte-rich optic nerves of aged mice, albeit with lower magnitude. This observation suggests that similar biological processes are affected in aging glial cells in central and peripheral nervous systems, however with different dynamics. Our data, which provide the first comprehensive comparison of molecular changes in glial cells in three distinct biological conditions comprising development, aging and disease, provide not only a new inside into the molecular alterations underlying neural system aging but also identify target pathways for potential therapeutic approaches to prevent or delay complications associated with age-related and inherited forms of neuropathies. *Current address: Department of Physiology, UCSF, San Francisco, CA, USA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UniPathway (http://www.unipathway.org) is a fully manually curated resource for the representation and annotation of metabolic pathways. UniPathway provides explicit representations of enzyme-catalyzed and spontaneous chemical reactions, as well as a hierarchical representation of metabolic pathways. This hierarchy uses linear subpathways as the basic building block for the assembly of larger and more complex pathways, including species-specific pathway variants. All of the pathway data in UniPathway has been extensively cross-linked to existing pathway resources such as KEGG and MetaCyc, as well as sequence resources such as the UniProt KnowledgeBase (UniProtKB), for which UniPathway provides a controlled vocabulary for pathway annotation. We introduce here the basic concepts underlying the UniPathway resource, with the aim of allowing users to fully exploit the information provided by UniPathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Viral infection often perturbs host cell signaling pathways including those involving mitogen-activated protein kinases (MAPKs). We now show that reovirus infection results in the selective activation of c-Jun N-terminal kinase (JNK). Reovirus-induced JNK activation is associated with an increase in the phosphorylation of the JNK-dependent transcription factor c-Jun. Reovirus serotype 3 prototype strains Abney (T3A) and Dearing (T3D) induce significantly more JNK activation and c-Jun phosphorylation than does the serotype 1 prototypic strain Lang (T1L). T3D and T3A also induce more apoptosis in infected cells than T1L, and there was a significant correlation between the ability of these viruses to phosphorylate c-Jun and induce apoptosis. However, reovirus-induced apoptosis, but not reovirus-induced c-Jun phosphorylation, is inhibited by blocking TRAIL/receptor binding, suggesting that apoptosis and c-Jun phosphorylation involve parallel rather than identical pathways. Strain-specific differences in JNK activation are determined by the reovirus S1 and M2 gene segments, which encode viral outer capsid proteins (sigma1 and mu1c) involved in receptor binding and host cell membrane penetration. These same gene segments also determine differences in the capacity of reovirus strains to induce apoptosis, and again a significant correlation between the capacity of T1L x T3D reassortant reoviruses to both activate JNK and phosphorylate c-Jun and to induce apoptosis was shown. The extracellular signal-related kinase (ERK) is also activated in a strain-specific manner following reovirus infection. Unlike JNK activation, ERK activation could not be mapped to specific reovirus gene segments, suggesting that ERK activation and JNK activation are triggered by different events during virus-host cell interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many colour ornaments are composite traits consisting of at least four components, which themselves may be more complex, determined by independent evolutionary pathways, and potentially being under different environmental control. To date, little evidence exists that several different components of colour elaboration are condition dependent and no direct evidence exists that different ornamental components are affected by different sources of variation. For example, in carotenoid-based plumage colouration, one of the best-known condition-dependent ornaments, colour elaboration stems from both condition-dependent pigment concentration and structural components. Some environmental flexibility of these components has been suggested, but specifically which and how they are affected remains unknown. Here, we tested whether multiple colour components may be condition dependent, by using a comprehensive 3 × 2 experimental design, in which we carotenoid supplemented and immune challenged great tit nestlings (Parus major) and quantified effects on different components of colouration. Plumage colouration was affected by an interaction between carotenoid availability and immune challenge. Path analyses showed that carotenoid supplementation increased plumage saturation via feather carotenoid concentration and via mechanisms unrelated to carotenoid deposition, while immune challenge affected feather length, but not carotenoid concentration. Thus, independent condition-dependent pathways, affected by different sources of variation, determine colour elaboration. This provides opportunities for the evolution of multiple signals within components of ornamental traits. This finding indicates that the selective forces shaping the evolution of different components of a composite trait and the trait's signal content may be more complex than believed so far, and that holistic approaches are required for drawing comprehensive evolutionary conclusions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Charcot-Marie-Tooth neuropathy (CMT) represents a heterogenous group of inherited disorders of the peripheral nervous system. One form of autosomal recessive demyelinating CMT (CMT4C, 5q32) is caused by mutations in the gene encoding KIAA1985, a protein of so far unknown function. Here we show that KIAA1985 is exclusively expressed in Schwann cells. KIAA1985 is tethered to cellular membranes through an N-terminal myristic acid anchor and localizes to the perinuclear recycling compartment. A search for proteins that interact with KIAA1985 identified the small GTPase Rab11, a key regulator of recycling endosome functions. CMT4C-related missense mutations disrupt the KIAA1985/Rab11 interaction. Protein binding studies indicate that KIAA1985 functions as a Rab11 effector, as it interacts only with active forms of Rab11 (WT and Q70L) and does not interact with the GDP locked mutant (S25N). Consistent with a function of Rab11 in Schwann cell myelination, myelin formation was strongly impaired when dorsal root ganglion neurons were co-cultured with Schwann cells infected with Rab11 S25N. Our data indicate that the KIAA1985/Rab11 interaction is relevant for peripheral nerve pathophysiology and place endosomal recycling on the list of cellular mechanisms involved in Schwann cell myelination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY IL-1R and TLRs are key players in innate immunity and inflammation. Tollip was identified as a component of IL-1RI, TLR2 and TLR4 signaling complexes that activate NF-κB and MAP kinase pathways. Tollip was previously shown as a negative regulator of NF-κB and MAP Kinase activation. We have characterized the role of Tollip in IL-R/TLRs induced signaling by the analysis of the Tollip deficient mice. We showed that NF-κB and MAPK (p38, JNK, or ERK1/2) signaling appeared normal in Tollip deficient cells following stimulation with IL-1β, lipopolysaccharide (LPS), and other TLR ligands. Also IL-1β and TLRs ligands induced activation of immune cells was indistinguishable from wild-type cells. Strikingly, in Tollip deficient mice the production of the inflammatory cytokines, IL-6 or TNF-α was significantly reduced relative to control mice after treatment with physiological doses of IL-1β or LPS, whereas no difference was observed at high doses of stimulation with LPS or in LPS induced septic shock. Therefore, Tollip could be critical for regulation of optimal responses to IL-1β and LPS, in addition to its role as negative regulator of the signaling. We also studied the role of Tollip as an endocytic adaptor for IL-1R endocytosis. We could show that Il-1R is ubiquitinated after IL-1β stimulation, and that Tollip's CUE domain binds IL-1RI in an ubiquitin-dependent manner. We followed IL-1R internalization and Tollip localization by confocal microscopy. Consistent with a role for Tollip in sorting of ubiquitinated IL-1RI, a significant amount of Tollip was also localized at the late endosomal compartment. We could show that Tollip is required for efficient lysosomal targeting of ubiquitinated IL-1R1, In the absence of Tollip or in Tollip deficient cells reconstituted with a Tollip mutant (defective in ubiquitin binding) IL-1RI accumulates in enlarged late endosomes. In addition, Tollip was shown to interact with, another endocytic adapter, Toml, and both interact with IL-1RI. In conclusion, we showed that Tollip is required for IL-1β and LPS signaling for cytokine production. In addition we showed and that Tollip has a role as an endocytic adapter, necessary for efficient trafficking and lysosomal degradation of IL-1RI. Resumé Le récepteur à l'interleukine-1 (IL-1R) et les récepteurs "Toll-like" (TLRs) sont des acteurs cruciaux de la réponse immunitaire innée et de l'inflammation. La proteine Tollip a été identifiée comme étant un élément des complexes de signalisation, induits par les récepteurs IL-1RI, TLR-2 et TLR-4, qui mènent à l'activation de la voie des MAP kinases et de NF-κB. Dans de précédentes études, il a été montré que Tollip pouvait inhiber ces deux voies de signalisation. Nous avons voulu caractériser plus précisément le rôle de Tollip dans l'activation des voies de signalisation mitées par IL-1R/TLRs en utilisant une lignée murine déficiente pour la protéine Tollip. Ainsi, en absence de Tollip, les cascades d'activation de NF-κB et MAPK (p38, JNK, or ERK1/2) ne semblent pas affectées après stimulation avec IL-1β, lipopolysaccharide (LPS) ou d' autres ligands des TLR. La réponse des cellules du système immunitaire induite par la stimulation avec IL-1β et les ligands des TLR est également comparable entre les souris sauvages et les souris deficientes pour Tollip. Par contre, dans cette lignée murine, la production de cytokines proinflammatoires IL-6 et TNFα induite par la stimulation à dose physiologique de IL-1β or LPS, est réduite. Cependant, lors de stimulation à plus hautes doses de LPS ou pendant un choc septique induit par de LPS, cette réduction n'est pas observée. Ces résultats montrent que Tollip pourrait avoir un rôle déterminant dans l'activation optimale en réponse à l' IL-1β et au LPS qui s'ajoute à sa fonction inhibitrice des mêmes voies de signalisation. Nous avons aussi étudié le rôle de Tollip comme molécule adaptatatrice du mécanisme endocytique d'internalisation de l' IL-1RI. Ainsi, l' IL-1R est ubiquitiné après stimulation par l' IL-1β , permettant à Tollip de se lier au récepteur. Cette interaction est réalisée entre le domaine CUE de Tollip et l'IL-1R via l'ubiquitine. L'internalisation et la localisation intracellulaire de l'IL-1RI et de Tollip ont été observés par microscopie confocale. En accord avec le rôle de Tollip dans le triage et la recirculation des IL-1R ubiquitiné, une quantité importante de Tollip été détectée dans l' endosome tardif. Nous avons pu démontrer que Tollip était nécessaire pour diriger efficacement ubiquitiné vers les lysosomes. Dans des cellules déficientes pour Tollip, ou reconstituées avec un mutant de Tollip (MF/AA) incapable de lier l'ubiquitine, IL-1RI s'accumule dans des vesicules anormales de l'endosome tardif. Dans ce travail, nous avons pu confirmer et préciser la fonction de la protéine Tollip dans l' activation de la production de cytokines induites par l' IL-1p and le LPS lors de l'inflammation et découvrir son rôle d'adaptateur dans l' internalisation et l'endocytose de l' IL-1RI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The past few decades have seen a considerable increase in the number of parallel and distributed systems. With the development of more complex applications, the need for more powerful systems has emerged and various parallel and distributed environments have been designed and implemented. Each of the environments, including hardware and software, has unique strengths and weaknesses. There is no single parallel environment that can be identified as the best environment for all applications with respect to hardware and software properties. The main goal of this thesis is to provide a novel way of performing data-parallel computation in parallel and distributed environments by utilizing the best characteristics of difference aspects of parallel computing. For the purpose of this thesis, three aspects of parallel computing were identified and studied. First, three parallel environments (shared memory, distributed memory, and a network of workstations) are evaluated to quantify theirsuitability for different parallel applications. Due to the parallel and distributed nature of the environments, networks connecting the processors in these environments were investigated with respect to their performance characteristics. Second, scheduling algorithms are studied in order to make them more efficient and effective. A concept of application-specific information scheduling is introduced. The application- specific information is data about the workload extractedfrom an application, which is provided to a scheduling algorithm. Three scheduling algorithms are enhanced to utilize the application-specific information to further refine their scheduling properties. A more accurate description of the workload is especially important in cases where the workunits are heterogeneous and the parallel environment is heterogeneous and/or non-dedicated. The results obtained show that the additional information regarding the workload has a positive impact on the performance of applications. Third, a programming paradigm for networks of symmetric multiprocessor (SMP) workstations is introduced. The MPIT programming paradigm incorporates the Message Passing Interface (MPI) with threads to provide a methodology to write parallel applications that efficiently utilize the available resources and minimize the overhead. The MPIT allows for communication and computation to overlap by deploying a dedicated thread for communication. Furthermore, the programming paradigm implements an application-specific scheduling algorithm. The scheduling algorithm is executed by the communication thread. Thus, the scheduling does not affect the execution of the parallel application. Performance results achieved from the MPIT show that considerable improvements over conventional MPI applications are achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical weather prediction and climate simulation have been among the computationally most demanding applications of high performance computing eversince they were started in the 1950's. Since the 1980's, the most powerful computers have featured an ever larger number of processors. By the early 2000's, this number is often several thousand. An operational weather model must use all these processors in a highly coordinated fashion. The critical resource in running such models is not computation, but the amount of necessary communication between the processors. The communication capacity of parallel computers often fallsfar short of their computational power. The articles in this thesis cover fourteen years of research into how to harness thousands of processors on a single weather forecast or climate simulation, so that the application can benefit as much as possible from the power of parallel high performance computers. The resultsattained in these articles have already been widely applied, so that currently most of the organizations that carry out global weather forecasting or climate simulation anywhere in the world use methods introduced in them. Some further studies extend parallelization opportunities into other parts of the weather forecasting environment, in particular to data assimilation of satellite observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Optimization methods allow designing changes in a system so that specific goals are attained. These techniques are fundamental for metabolic engineering. However, they are not directly applicable for investigating the evolution of metabolic adaptation to environmental changes. Although biological systems have evolved by natural selection and result in well-adapted systems, we can hardly expect that actual metabolic processes are at the theoretical optimum that could result from an optimization analysis. More likely, natural systems are to be found in a feasible region compatible with global physiological requirements. Results: We first present a new method for globally optimizing nonlinear models of metabolic pathways that are based on the Generalized Mass Action (GMA) representation. The optimization task is posed as a nonconvex nonlinear programming (NLP) problem that is solved by an outer- approximation algorithm. This method relies on solving iteratively reduced NLP slave subproblems and mixed-integer linear programming (MILP) master problems that provide valid upper and lower bounds, respectively, on the global solution to the original NLP. The capabilities of this method are illustrated through its application to the anaerobic fermentation pathway in Saccharomyces cerevisiae. We next introduce a method to identify the feasibility parametric regions that allow a system to meet a set of physiological constraints that can be represented in mathematical terms through algebraic equations. This technique is based on applying the outer-approximation based algorithm iteratively over a reduced search space in order to identify regions that contain feasible solutions to the problem and discard others in which no feasible solution exists. As an example, we characterize the feasible enzyme activity changes that are compatible with an appropriate adaptive response of yeast Saccharomyces cerevisiae to heat shock Conclusion: Our results show the utility of the suggested approach for investigating the evolution of adaptive responses to environmental changes. The proposed method can be used in other important applications such as the evaluation of parameter changes that are compatible with health and disease states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The central and peripheral nervous systems are involved in multiple agedependent neurological deficits that are often attributed to alterations in function of myelinating glial cells. However, the molecular events that underlie the age-related decline of glial cell function are unknown. We used Schwann cells as a model to study biological processes affected in glial cells by aging. We comprehensively profiled gene expression of the Schwann cell-rich mouse sciatic nerve throughout life, from day of birth until senescence (840 days of age). We combined the aging data with the microarray transcriptional data obtained using nerves isolated from Schwann cell-specific neuropathy-inducing mutants MPZCre/þ/Lpin1fE2-3/fE2-3, MPZCre/þ/ScapfE1/fE1 and Pmp22-null mice. A majority of age related transcripts were also affected in the analyzed mouse models of neuropathy (54.4%) and in development (59.5%) indicating a high level of overlapping in implicated molecular pathways. We observed that compared to peripheral nerve development, dynamically changing expression profiles in aging have opposite (anticorrelated) orientation while they copy the orientation of transcriptional changes observed in analyzed neuropathy models. Subsequent clustering and biological annotation of dynamically changing transcripts revealed that the processes most significantly deregulated in aging include inflammatory/ immune response and lipid biosynthesis/metabolism. Importantly, the changes in these pathways were also observed in myelinated oligodendrocyte- rich optic nerves of aged mice, albeit with lower magnitude. This observation suggests that similar biological processes are affected in aging glial cells in central and peripheral nervous systems, however with different dynamics. Our data, which provide the first comprehensive comparison of molecular changes in glial cells in three distinct biological conditions comprising development, aging and disease, provide not only a new inside into the molecular alterations underlying neural system aging but also identify target pathways for potential therapeutical approaches to prevent or delay complications associated with age-related and inherited forms of neuropathies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Circadian clocks, present in organisms leaving in a rhythmic environment, constitute the mechanisms allowing anticipation and adaptation of behavior and physiology in response to these environmental variations. As a consequence, most aspects of metabolism and behavior are under the control of this circadian clock. At a molecular level, in all the studied species, the rhythmic expression of the genes involved are generated by interconnected transcriptional and translational feedback loops. In mammals, the heterodimer composed of BMAL1 and its partners CLOCK or NPAS2 constitutes a transcriptional activator regulating transcription of Per and Cry genes. These genes encode for repressors of the activity of BMAL1:CLOCK or BMAL1: NPAS2 heterodimers, thus closing a negative feedback loop that generates rhythms of approximately 24 hours. The aim of my doctoral work consisted in the investigation of the role of circadian clock in the regulation of different aspects of mouse metabolism through the rhythmic activation of signaling pathways. First, we showed that one way how the circadian clock exerts its function as an oscillator is through the regulation of mRNA translation. Indeed, we present evidence showing that circadian clock influences the temporal translation of a subset of mRNAs involved in ribosome biogenesis by controlling the transcription of translation initiation factors as well as the clock-dependent rhythmic activation of signaling pathways involved in their regulation. Moreover, the circadian oscillator regulates the transcription of ribosomal protein mRNAs and ribosomal RNAs. Thus the circadian clock exerts a major role in coordinating transcription and translation steps underlying ribosome biogenesis. In the second part, we showed the involvement of the circadian clock in lipid metabolism. Indeed, the three PAR bZip transcription factors DBP, TEF and HLF, are regulated by the molecular clock and play key roles in the control of lipid metabolism. Here we present evidence concerning the circadian expression and activity of PPARα via the circadian transcription of genes involved in the release of fatty acids, natural ligands of PPARα. It leads to the rhythmic activation of PPARα itself which could then play its role in the transcription of genes encoding proteins involved in lipid, cholesterol and glucose metabolism. In addition, we considered the possible role of lipid transporters, here SCP2, in the modulation of circadian activation of signaling pathways such as TORC1, PPARα and SREBP, linked to metabolism, and its feedback on the circadian clock. In the last part of this work, we studied the effects of these circadian clock-orchestrated pathways in physiology, as clock disruptions have been shown to be linked to metabolic disorders. We performed in vivo experiments on genetically and high-fat induced obese mice devoid of functional circadian clock. The results obtained showed that clock disruption leads to impaired triglycerides and glucose homeostasis in addition to insulin secretion and sensitivity. -- Les rythmes circadiens, présents chez tout organisme vivant dans un environnement rythmique, constituent l'ensemble de mécanismes permettant des réponses comportementales et physiologiques anticipées et adaptées aux variations environnementales. De ce fait, la plupart des aspects liés au métabolisme et au comportement de ces organismes apparaissent être sous le contrôle de l'horloge circadienne contrôlant ces rythmes. Au niveau moléculaire, dans toutes les espèces étudiées, l'expression rythmique de gènes impliqués sont générés par l'interconnexion de boucles de contrôle transcriptionnelles et traductionnelles. Chez les mammifères, l'hétérodimère composé de BMAL1 et de ses partenaires CLOCK ou NPAS2 constitue un activateur transcriptionnel régulant la transcription des gènes Per et Cry. Ces gènes codent pour des répresseurs de l'activité des hétérodimères BMAL1:CLOCK ou BMAL1:NPAS2. Cela a pour effet de fermer la boucle négative, générant ainsi des rythmes d'environ 24 heures. Le but de mon travail de thèse a consisté en l'investigation du rôle de l'horloge circadienne dans la régulation de certains aspects du métabolisme chez la souris via la régulation de l'activation rythmique des voies de signalisation. Nous avons tout d'abord montré que l'horloge circadienne exerce sa fonction d'oscillateur notamment au niveau de la régulation de la traduction des ARNm. En effet, nous présentons des preuves montrant que l'horloge circadienne influence la traduction temporelle d'un groupe d'ARNm impliqués dans la biogénèse des ribosomes en contrôlant la transcription de facteurs d'initiation de la traduction ainsi que l'activation rythmique des voies de signalisation qui sont impliquées dans leur régulation. De plus, l'oscillateur circadien régule la transcription d'ARNm codant pour les protéines ribosomales et d'ARN ribosomaux. De cette façon, l'horloge circadienne exerce un rôle majeur dans la coordination des étapes de transcription et traduction permettant la biogénèse des ribosomes. Dans la deuxième partie, nous montrons les implications de l'horloge circadienne dans le métabolisme des lipides. En effet, DBP, TEF et HLF, trois facteurs de transcription de la famille des PAR bZip qui sont régulés par l'horloge circadienne, jouent un rôle clé dans le contrôle du métabolisme des lipides par l'horloge circadienne. Nous apportons ici des preuves concernant l'expression et l'activité rythmiques de PPARα via la transcription circadienne de gènes impliqués dans le relargage d'acides gras, ligands naturels de PPARα, conduisant à l'activation circadienne de PPARα lui-même, pouvant ainsi jouer son rôle de facteur de transcription de gènes codant pour des protéines impliquées dans le métabolisme des lipides, du cholestérol et du glucose. De plus, nous nous sommes penchés sur le rôle possible de transporteurs de lipides, ici SCP2, dans la modulation de l'activation circadienne de voies de signalisation, telles que TORC1, PPARα et SREBP, qui sont liées au métabolisme, ainsi que son impact sur l'horloge elle-même. Dans la dernière partie de ce travail, nous avons étudié les effets de l'activation de ces voies de signalisation régulées par l'horloge circadienne dans le contexte physiologique puisqu'il a été montré que la perturbation de l'horloge pouvait être associée à des désordres métaboliques. Pour ce faire, nous avons fait des expériences in vivo sur des souris déficientes pour l'horloge moléculaire pour lesquelles l'obésité est induite génétiquement ou induite par la nourriture riche en lipides. Les résultats que nous obtenons montrent des dérèglements au niveau de l'homéostasie des triglycérides et du glucose ainsi que sur l'expression et la réponse à l'insuline.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND. So far few studies have focused on the last steps of drug-use trajectories. Heroin has been described as a final stage, but the non-medical use of prescription opioids (NMUPOs) is often associated with heroin use. There is, however, no consensus yet about which one precedes the other. AIMS. The objective of this study was to test which of these two substances was likely to be induced by the other using a prospective design. MATERIAL AND METHODS. We used data from the Swiss Longitudinal Cohort Study on Substance Use Risk Factors (C-SURF) to assess exposure to heroin and NMUPO at two times points (N = 5,041). Cross-lagged panel models provided evidence regarding prospective pathways between heroin and NMUPOs. Power analyses provided evidence about significance and clinical relevance. RESULTS. Results showed that heroin use predicted later NMUPO use (? = 1.217, p < 0.001) and that the reverse pathway was non-significant (? = 0.240, p = .233). Heroin use seems to be an important determinant, causing a 150% risk increase for NMUPO use at follow-up, whereas NMUPO use at baseline increases the risk of heroin use at follow-up by a mere non-significant 20%. CONCLUSIONS. Thus, heroin users were more likely to move to NMUPOs than non-heroin users, whereas NMUPO users were not likely to move to heroin use. The pathway of substance use seemed to include first heroin use, then NMUPO use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lentivirus-based gene delivery vectors carrying multiple gene cassettes are powerful tools in gene transfer studies and gene therapy, allowing coexpression of multiple therapeutic factors and, if desired, fluorescent reporters. Current strategies to express transgenes and microRNA (miRNA) clusters from a single vector have certain limitations that affect transgene expression levels and/or vector titers. In this study, we describe a novel vector design that facilitates combined expression of therapeutic RNA- and protein-based antiangiogenic factors as well as a fluorescent reporter from back-to-back RNApolII-driven expression cassettes. This configuration allows effective production of intron-embedded miRNAs that are released upon transduction of target cells. Exploiting such multigenic lentiviral vectors, we demonstrate robust miRNA-directed downregulation of vascular endothelial growth factor (VEGF) expression, leading to reduced angiogenesis, and parallel impairment of angiogenic pathways by codelivering the gene encoding pigment epithelium-derived factor (PEDF). Notably, subretinal injections of lentiviral vectors reveal efficient retinal pigment epithelium-specific gene expression driven by the VMD2 promoter, verifying that multigenic lentiviral vectors can be produced with high titers sufficient for in vivo applications. Altogether, our results suggest the potential applicability of combined miRNA- and protein-encoding lentiviral vectors in antiangiogenic gene therapy, including new combination therapies for amelioration of age-related macular degeneration.