914 resultados para Page, Curtis Hidden
Resumo:
In this paper we consider the estimation of population size from onesource capture–recapture data, that is, a list in which individuals can potentially be found repeatedly and where the question is how many individuals are missed by the list. As a typical example, we provide data from a drug user study in Bangkok from 2001 where the list consists of drug users who repeatedly contact treatment institutions. Drug users with 1, 2, 3, . . . contacts occur, but drug users with zero contacts are not present, requiring the size of this group to be estimated. Statistically, these data can be considered as stemming from a zero-truncated count distribution.We revisit an estimator for the population size suggested by Zelterman that is known to be robust under potential unobserved heterogeneity. We demonstrate that the Zelterman estimator can be viewed as a maximum likelihood estimator for a locally truncated Poisson likelihood which is equivalent to a binomial likelihood. This result allows the extension of the Zelterman estimator by means of logistic regression to include observed heterogeneity in the form of covariates. We also review an estimator proposed by Chao and explain why we are not able to obtain similar results for this estimator. The Zelterman estimator is applied in two case studies, the first a drug user study from Bangkok, the second an illegal immigrant study in the Netherlands. Our results suggest the new estimator should be used, in particular, if substantial unobserved heterogeneity is present.
Resumo:
None of the current surveillance streams monitoring the presence of scrapie in Great Britain provide a comprehensive and unbiased estimate of the prevalence of the disease at the holding level. Previous work to estimate the under-ascertainment adjusted prevalence of scrapie in Great Britain applied multiple-list capture–recapture methods. The enforcement of new control measures on scrapie-affected holdings in 2004 has stopped the overlapping between surveillance sources and, hence, the application of multiple-list capture–recapture models. Alternative methods, still under the capture–recapture methodology, relying on repeated entries in one single list have been suggested in these situations. In this article, we apply one-list capture–recapture approaches to data held on the Scrapie Notifications Database to estimate the undetected population of scrapie-affected holdings with clinical disease in Great Britain for the years 2002, 2003, and 2004. For doing so, we develop a new diagnostic tool for indication of heterogeneity as well as a new understanding of the Zelterman and Chao’s lower bound estimators to account for potential unobserved heterogeneity. We demonstrate that the Zelterman estimator can be viewed as a maximum likelihood estimator for a special, locally truncated Poisson likelihood equivalent to a binomial likelihood. This understanding allows the extension of the Zelterman approach by means of logistic regression to include observed heterogeneity in the form of covariates—in case studied here, the holding size and country of origin. Our results confirm the presence of substantial unobserved heterogeneity supporting the application of our two estimators. The total scrapie-affected holding population in Great Britain is around 300 holdings per year. None of the covariates appear to inform the model significantly.
Resumo:
None of the current surveillance streams monitoring the presence of scrapie in Great Britain provide a comprehensive and unbiased estimate of the prevalence of the disease at the holding level. Previous work to estimate the under-ascertainment adjusted prevalence of scrapie in Great Britain applied multiple-list capture-recapture methods. The enforcement of new control measures on scrapie-affected holdings in 2004 has stopped the overlapping between surveillance sources and, hence, the application of multiple-list capture-recapture models. Alternative methods, still under the capture-recapture methodology, relying on repeated entries in one single list have been suggested in these situations. In this article, we apply one-list capture-recapture approaches to data held on the Scrapie Notifications Database to estimate the undetected population of scrapie-affected holdings with clinical disease in Great Britain for the years 2002, 2003, and 2004. For doing so, we develop a new diagnostic tool for indication of heterogeneity as well as a new understanding of the Zelterman and Chao's lower bound estimators to account for potential unobserved heterogeneity. We demonstrate that the Zelterman estimator can be viewed as a maximum likelihood estimator for a special, locally truncated Poisson likelihood equivalent to a binomial likelihood. This understanding allows the extension of the Zelterman approach by means of logistic regression to include observed heterogeneity in the form of covariates-in case studied here, the holding size and country of origin. Our results confirm the presence of substantial unobserved heterogeneity supporting the application of our two estimators. The total scrapie-affected holding population in Great Britain is around 300 holdings per year. None of the covariates appear to inform the model significantly.
Resumo:
This article presents a statistical method for detecting recombination in DNA sequence alignments, which is based on combining two probabilistic graphical models: (1) a taxon graph (phylogenetic tree) representing the relationship between the taxa, and (2) a site graph (hidden Markov model) representing interactions between different sites in the DNA sequence alignments. We adopt a Bayesian approach and sample the parameters of the model from the posterior distribution with Markov chain Monte Carlo, using a Metropolis-Hastings and Gibbs-within-Gibbs scheme. The proposed method is tested on various synthetic and real-world DNA sequence alignments, and we compare its performance with the established detection methods RECPARS, PLATO, and TOPAL, as well as with two alternative parameter estimation schemes.
Resumo:
Raised levels of chylomicrons and chylomicron remnants, which circulate following a meal, have been implicated in the development of atherosclerosis. Apolipoprotein (apo) B-48 is exclusively associated with chylomicron particles and provides a specific direct measurement of the number of intestinally derived lipoproteins in the circulation. The quantification of apo B-48 in biological samples is difficult due to the very low concentration in plasma, structural similarity to the N-terminal 48% of apo B-100 and lack of an appropriate standard for apo B-48. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), followed by coomassie blue staining, has been used for many years to measure apo B-48 levels in triacylglycerol (TAG)-rich lipoprotein samples. The raising of antiserum to apo B-48 has led to development of more sensitive and specific methods including immunoblotting and enzyme-linked immunosorbant assays (ELISAs). This has enabled direct measurement of apo B-48 in plasma without the need for separation into TAG-rich lipoproteins. A high degree of variability was observed in the apo B-48 concentrations reported in the literature both within and between the SDS-PAGE, immunoblotting and ELISA methods. (C) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Hidden Markov Models (HMMs) have been successfully applied to different modelling and classification problems from different areas over the recent years. An important step in using HMMs is the initialisation of the parameters of the model as the subsequent learning of HMM’s parameters will be dependent on these values. This initialisation should take into account the knowledge about the addressed problem and also optimisation techniques to estimate the best initial parameters given a cost function, and consequently, to estimate the best log-likelihood. This paper proposes the initialisation of Hidden Markov Models parameters using the optimisation algorithm Differential Evolution with the aim to obtain the best log-likelihood.
Resumo:
Free-flow isoelectric focusing (IEF) is a gel-free method for separating proteins based on their isoelectric point (pl) in a liquid environment and in the presence of carrier ampholytes. this method has been used with the RotoforTM cell at the preparative scale to fractionate proteins from samples containing several hundred milligrams of protein; see the refeences listed in Bio-Rad bulletin 3152. the MicroRotofor cell applies the same method to much sl=maller protein samples without dilution, separating and recoverng milligram quantities of protein in a total volume of about 2 ml.
Resumo:
Based on insufficient evidence, and inadequate research, Floridi and his students report inaccuracies and draw false conclusions in their Minds and Machines evaluation, which this paper aims to clarify. Acting as invited judges, Floridi et al. participated in nine, of the ninety-six, Turing tests staged in the finals of the 18th Loebner Prize for Artificial Intelligence in October 2008. From the transcripts it appears that they used power over solidarity as an interrogation technique. As a result, they were fooled on several occasions into believing that a machine was a human and that a human was a machine. Worse still, they did not realise their mistake. This resulted in a combined correct identification rate of less than 56%. In their paper they assumed that they had made correct identifications when they in fact had been incorrect.