669 resultados para PYRIDINE
Resumo:
We conducted the liquid phase oxidation of toluene with molecular oxygen over heterogeneous catalysts of copper-based binary metal oxides. Among the copper-based binary metal oxides, iron-copper binary oxide (Fe/Cu = 0.3 atomic ratio) was found to be the best catalyst. In the presence of pyridine, overoxidation of benzaldehyde to benzoic acid was partially prevented. As a result, highly selective formation of benzaldehyde (86% selectivity) was observed after 2 h of reaction (7% conversion of toluene) at 463 K and 1.0 MPa of oxygen atmosphere in the presence of pyridine. These catalytic performances were similar or better than those in the gas phase oxidation of toluene at reaction temperatures higher than 473 K and under 0.5-2.5 MPa. It was suggested from competitive adsorption measurements that pyridine could reduce the adsorption of benzaldehyde. At a long reaction time of 4 It, the conversion increased to 25% and benzoic acid became the predominant reaction product (72% selectivity) in the absence of pyridine. The yield of benzoic acid was higher than that in the Snia-Viscosa process, which requires corrosive halogen ions and acidic solvents in the homogeneous reaction media. The catalyst was easily recycled by simple filtration and reusable after washing and drying.
Resumo:
The research described in this thesis involved the chemistry of borane-species which contain one or more halide or pseudohalide groups. Both monoboron species e.g. [BH3X]- and "cluster" borane species e.g. [B10H9X]2- and I-Se B11H10 were studied. The first chapter is a review of the syntheses, properties and reactions of halide and pseudohalide species containing from one to ten boron atoms. Chapter Two is a theoretical investigation of' the electronic and molecular structures of two series of boranes i. e. [BH3X]- and [B10H9X]2- where X = H, CI, CN, NCS, SCN and N3. The calculational method used was the Modified Neglect of Differential Overlap (MNDO) method of Dewar et al. The results were compared where possible with experimental results such as the X-ray crystallographically determined structures of [BH3CI]- and [B10H10]2-. Chapter Three concerns halogenated selenaborane clusters and reports an improved synthesis of 12-Br-SeB11H10 and the first structural data for a simple non-metal containing selenaborane cage with the X-ray crystallographically determined structure of 12-1-SeB11H10. Finally, an indepth n.m.r. study of Se2B9H9 is also reported together with attempts to halogenate this compound. The last two chapters are based on single boron systems. Chapter Four concerns the synthetic routes to amine-boranes and -cyanoboranes from [BH4]- and [BH3CN]- substrates. This chapter discusses some difficulties encountered when polyamines were used in these reactions. The characterisation of an unusual ketone isolated from some of these reactions, the X-ray crystallographically determined structure of 4-dimethylamino-pyridine-cyanoborane and a new route to pyrazabole dimeric species are also discussed. The final chapter reports on work carried out at producing BH2X (X = H, CN) adducts of aminophosphines. Three routes were attempted to generate P-B and N-B bonded species with varying degrees of success. Some unusual products of these reactions are discussed including [Ph2(O) PPPh2 ] [Ph2NH]2, the structure of which was determined by X-ray crystallography.
Resumo:
We report here the nonlinear rheological properties of metallo-supramolecular networks formed by the reversible cross-linking of semi-dilute unentangled solutions of poly(4-vinylpyridine) (PVP) in dimethyl sulfoxide (DMSO). The reversible cross-linkers are bis-Pd(II) or bis-Pt(II) complexes that coordinate to the pyridine functional groups on the PVP. Under steady shear, shear thickening is observed above a critical shear rate, and that critical shear rate is experimentally correlated with the lifetime of the metal-ligand bond. The onset and magnitude of the shear thickening depend on the amount of cross-linkers added. In contrast to the behavior observed in most transient networks, the time scale of network relaxation is found to increase during shear thickening. The primary mechanism of shear thickening is ascribed to the shear-induced transformation of intrachain cross-linking to interchain cross-linking, rather than nonlinear high tension along polymer chains that are stretched beyond the Gaussian range.
Resumo:
The absorption spectra. cyclic voltammetry and spectroelectrochemistry of [Ni(II)DPTAA] and [Co(II)DPTAA] (DPTAA = 6,13-diphenyldibenzo[b,i][1,4,8,11] tetraaza[14]annulene) complexes in DMF are reported in detail. The ligand oxidation is observed for [Ni(II)DPTAA] at +0.70 V vs. SCE whereas Ni2(+/+) occurs at - 1.60 V. For [Co(II)DPTAA], a ligand oxidation redox couple is seen at +0.56 V while the Co2+/+ and Co2+/3+ redox couples appear at -1.21 and +0.24 V, respectively. All observed redox couples are assigned to reversible one-electron processes on account of peak separations and scan-rate dependency. These processes were further investigated by spectroelectrochemistry for [Co(II)DPTAA]. For [Co(II)DPTAA], axial ligation of pyridine was found to shift the Co2+/3+ redox couple more negative. while the ligand oxidation was shifted to more positive potentials. From a spectrophotometric titration of [Co(II)DPTAA] with pyridine an equilibrium constant, K-f, was determined for the binding of pyridine to [Co(II)DPTAA]. This was found to be 10.2 dm(3) mol(-1), slightly lower than that of [Co(II)TAA], indicating the influence of the phenyl groups. From this value and shifts in the Co2+/3+ redox couple upon ligation, an equilibrium constant for the binding of pyridine to [Co(III)DPTAA], K'(f), was found to be 5.06 x 10(6) dm(3) mol(-1). (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A series of 2-, 3- and 4-substituted pyridines was metabolised using the mutant soil bacterium Pseudomonas putida UV4 which contains a toluene dioxygenase (TDO) enzyme. The regioselectivity of the biotransformation in each case was determined by the position of the substituent. 4-Alkylpyridines were hydroxylated exclusively on the ring to give the corresponding 4-substituted 3-hydroxypyridines, while 3-alkylpyridines were hydroxylated stereoselectively on C-1 of the alkyl group with no evidence of ring hydroxylation. 2-Alkylpyridines gave both ring and side-chain hydroxylation products. Choro- and bromo-substituted pyridines, and pyridine itself, while being poor substrates for P. putida UV4, were converted to some extent to the corresponding 3-hydroxypyridines. These unoptimised biotransformations are rare examples of the direct enzyme-catalysed oxidation of pyridine rings and provide a novel synthetic method for the preparation of substituted pyridinols. Evidence for the involvement of the same TDO enzyme in both ring and side-chain hydroxylation pathways was obtained using a recombinant strain of Escherichia coli (pKST11) containing a cloned gene for TDO. The observed stereoselectivity of the side-chain hydroxylation process in P. putida UV4 was complicated by the action of an alcohol dehydrogenase enzyme in the organism which slowly leads to epimerisation of the initial (R)-alcohol bioproducts by dehydrogenation to the corresponding ketones followed by stereoselective reduction to the (S)-alcohols.
Resumo:
Purpose. The purpose of this study is to demonstrate the rational design and behaviour of the first dual mode optical and chemical prodrug, exemplified by an acetyl salicylic acid-based system. Methods. A cyclic 1,4-benzodioxinone prodrug was synthesised by reaction of 3,5-dimethoxybenzoin and acetyl salicoyl chloride with pyridine. After purification by column chromatography and recrystallization, characterization was achieved using infrared and NMR spectroscopies, mass spectrometry, elemental analysis and single crystal X-ray diffraction. Light-triggered drug liberation was characterised via UV-visible spectroscopy following low-power 365 nm irradiation for controlled times. Chemical drug liberation was characterised via UV-visible spectroscopy in pH 5.5 solution. Results. The synthetic method yielded pure prodrug, with full supporting characterisation. Light-triggered drug liberation proceeded at a rate of 8.30 10j2 sj1, while chemical, hydrolytic liberation proceeded independently at 1.89 10j3 sj1. The photochemical and hydrolytic reactions were both quantitative. Conclusions. This study demonstrates the first rational dual-mode optical and chemical prodrug, using acetyl salicylic acid as a model, acting as a paradigm for future dual-mode systems. Photochemical drug liberation proceeds 44 times faster than chemical liberation, suggesting potential use in drug-eluting medical devices where an additional burst of drug is required at the onset of infection.
Resumo:
Two series of ruthenium(II) polypyridyl complexes [Ru(bipy)2(phpytr)]+ and [Ru(bipy)2(phpztr)]+ (where Hphpytr = 2-(5-phenyl-1H-[1,2,4]triazol-3-yl)-pyridine and Hphpztr = 2-(5-phenyl-1H-[1,2,4]triazol-3-yl)-pyrazine) are examined by electrochemistry, UV/Vis, emission, resonance Raman, transient resonance Raman and transient absorption spectroscopy, in order to obtain a more comprehensive understanding of their excited state electronic properties. The interpretation of the results obtained is facilitated by the availability of several isotopologues of each of the complexes examined. For the pyridine-1,2,4-triazolato based complex the lowest emissive excited state is exclusively bipy based, however, for the pyrazine based complexes excited state localisation on particular ligands shows considerable solvent and pH dependency.
Resumo:
In chloroform, [RuCl2(nbd)(py)(2)] (1) (nbd = norbornadiene; py = pyridine) reacts with 1,4-bis(diphenylphosphino)-1,2,3,4-tetramethyl-1,3-butadiene (1,2,3,4-Me-4-NUPHOS) to give the dimer [Ru2Cl3(eta(4)-1,2,3,4-Me-4-NUPHOS)(2)]Cl (2a), whereas, in THF [RuCl2(1,2,3,4-Me-4-NUPHOS)(PY)(2)] (3) is isolated as the sole product of reaction. Compound 2 exists as a 4:1 mixture of two noninterconverting isomers, the major with C, symmetry and the minor with either C, or C-2 symmetry. A single-crystal X-ray analysis of [Ru2Cl3 (eta(4)-1,2,3,4-Me-4-NUPHOS)(2)] [SbF6] (2b), the hexafluoroantimonate salt of 2a, revealed that the diphosphine coordinates in an unusual manner, as a eta(4)-six-electron donor, bonded through both P atoms and one of the double bonds of the butadiene tether. Compounds 2a and 3 react with 1,2-ethylenediamine (en) in THF to afford [RuCl2(1,2,3,4-Me-4-NUPHOS)(en)] (4), which rapidly dissociates a chloride ligand in chloroform to give [RuCl(eta(4)-1,2,3,4-Me-4-NUPHOS)(en)] [Cl] (5a). Complexes 4 and 5a cleanly and quantitatively interconvert in a solvent-dependent equilibrium, and in THF 5a readily adds chloride to displace the eta(2)-interaction and re-form 4. A single-crystal X-ray structure determination of [RuCl(eta(4)-1,2,3,4-Me-4-NUPHOS)(en)][ClO4] (5b) confirmed that the diphosphine coordinates in an eta(4)-manner as a facial six-electron donor with the eta(2)-coordinated double bond occupying the site trans to chloride. The eta(4)-bonding mode can be readily identified by the unusually high-field chemical shift associated with the phosphorus atom adjacent to the eta(2)-coordinated double bond. Complexes 2a, 2b, 4, and 5a form catalysts that are active for transfer hydrogenation of a range of ketones. In all cases, catalysts formed from precursors 2a and 2b are markedly more active than those formed from 4 and 5a.
Resumo:
Rapid, quantitative SERS analysis of nicotine at ppm/ppb levels has been carried out using stable and inexpensive polymer-encapsulated Ag nanoparticles (gel-colls). The strongest nicotine band (1030 cm(-1)) was measured against d(5)-pyridine internal standard (974 cm(-1)) which was introduced during preparation of the stock gel-colls. Calibration plots of I-nic/I-pyr against the concentration of nicotine were non-linear but plotting I-nic/I-pyr against [nicotine](x) (x = 0.6-0.75, depending on the exact experimental conditions) gave linear calibrations over the range (0.1-10 ppm) with R-2 typically ca. 0.998. The RMS prediction error was found to be 0.10 ppm when the gel-colls were used for quantitative determination of unknown nicotine samples in 1-5 ppm level. The main advantages of the method are that the gel-colls constitute a highly stable and reproducible SERS medium that allows high throughput (50 sample h(-1)) measurements.
Resumo:
The synthesis of the C2-symmetrical ligand 1 consisting of two naphthalene units connected to two pyridine-2,6-dicarboxamide moieties linked by a xylene spacer and the formation of LnIII-based (Ln1/4 Sm, Eu, Tb, and Lu) dimetallic helicates [Ln2 · 13] in MeCN by means of a metal-directed synthesis is described. By analyzing the metal-induced changes in the absorption and the fluorescence of 1, the formation of the helicates, and the presence of a second species [Ln2 · 12] was confirmed by nonlinear- regression analysis. While significant changes were observed in the photophysical properties of 1, the most dramatic changes were observed in the metal-centred lanthanide emissions, upon excitation of the naphthalene antennae. From the changes in the lanthanide emission, we were able to demonstrate that these helicates were formed in high yields (ca. 90% after the addition of 0.6 equiv. of LnIII), with high binding constants, which matched well with that determined from the changes in the absorption spectra. The formation of the LuIII helicate, [ Lu2 · 13 ] , was also investigated for comparison purposes, as we were unable to obtain accurate binding constants from the changes in the fluorescence emission upon formation of [Sm2 · 13], [Eu2 · 13], and [Tb2 · 13].
Resumo:
Ionogels are solid oxide host networks con. ning at a meso-scale ionic liquids, and retaining their liquid nature. Ionogels were obtained by dissolving lanthanide(III) complexes in the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, [C(6)mim][Tf2N], followed by confinement of the lanthanide-doped ionic liquid mixtures in the pores of a nano-porous silica network. [C(6)mim][Ln(tta)(4)], where tta is 2-thenoyltrifluoroacetonate and Ln = Nd, Sm, Eu, Ho, Er, Yb, and [choline](3)[Tb(dpa)(3)], where dpa = pyridine-2,6-dicarboxylate (dipicolinate), were chosen as the lanthanide complexes. The ionogels are luminescent, ion-conductive inorganic-organic hybrid materials. Depending on the lanthanide(III) ion, emission in the visible or the near-infrared regions of the electromagnetic spectrum was observed. The work presented herein highlights that the confinement did not disturb the first coordination sphere of the lanthanide ions and also showed the excellent luminescence performance of the lanthanide tetrakis beta-diketonate complexes. The crystal structures of the complexes [C(6)mim][Yb(tta)(4)] and [choline](3)[Tb(dpa)(3)] are reported.
Resumo:
Highly luminescent anionic samarium(III) beta-diketonate and dipicolinate complexes were dissolved in the imidazolium ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(6)mim][Tf2N]. The solubility of the complexes in the ionic liquid was ensured by a careful choice of the countercation of the samarium(III) complex. The samarium(III) complexes that were considered are [C(6)mim][SM(tta)(4)], where tta is 2-thenoyltrifluoroacetonate; [C(6)mim][Sm(nta)(4)], where nta is 2-naphthoyltrifluoroacetonate; [C(6)mim][Sm(hfa)(4)], where hfa is hexafluoroacetylacetonate; and [choline](3)-[Sm(dpa)(3)], where dpa is pyridine-2,6-dicarboxylate (dipicolinate) and [choline](+) is (2-hydroxyethyl)trimethyl ammonium. The crystal structures of the tetrakis samarium(III) P-diketonate complexes revealed a distorted square antiprismatic coordination for the samarium(III) ion in all three cases. Luminescence spectra were recorded for the samarium(III) complexes dissolved in the imidazolium ionic liquid as well as in a conventional solvent, that is, acetonitrile or water for the beta-diketonate and dipicolinate complexes, respectively. These experiments demonstrate that [C(6)mim][Tf2N] is a suitable spectroscopic solvent for studying samarium(III) luminescence. High-luminescence quantum yields were observed for the samarium(III) beta-diketonate complexes in solution.
Resumo:
A synthesis of new bidentate pyridines has been developed, starting from ?-pinene. A copper complex of the pyridine-oxazoline ligands catalyzes asym. allylic oxidn. of cyclic olefins with good conversion rates and acceptable enantioselectivity (?67% ee). The imidazolium salt I has been identified as a precursor of the N,N'-unsym. N-heterocyclic carbene ligand, which upon complexation with palladium, catalyzed the intramol. amide enolate ?-arylation leading to oxindole in excellent yield but with low enantioselectivity.
Resumo:
The synthesis of a series of pyridine- and piperidine-substituted 1,2,3-triazolides linked to a riboside moiety is described. The presence of a triazolide substituent on the pyridine moiety permitted the facile reduction of the latter under mild hydrogenation conditions. These analogues were modelled as to define their similarity to nicotinamide riboside and quantify their ability to bind NAD-dependent protein deacetylases.
Resumo:
Dimethylallylguanidine, also known as galegine, isolated from Galega officinalis, has been shown to have weight reducing properties in vivo. Substitution of the guanidine group with an N-cyano group and replacement of guanidine with amidine, pyrimidine, pyridine, or the imidazole moieties removed the weight reducing properties when evaluated in BALB/c mice. However, retention of the guanidine and replacement of the dimethylallyl group by a series of functionalized benzyl substituents was shown to exhibit, and in some cases significantly improve, the weight reducing properties of these molecules in BALB/c, ob/ob, and diet induced obesity (DIO) mice models. The lead compound identified, across all models, was 1-(4-chlorobenzyl)guanidine hemisulfate, which gave an average daily weight difference (% from time-matched controls; +/- SEM) of -19.7 +/- 1.0, -11.0 +/- 0.7, and -7.3 +/- 0.8 in BALB/c, ob/ob, and DIO models, respectively.