983 resultados para PSYCHROPHILIC BACTERIUM
Resumo:
In intestinal secretions, secretory IgA (SIgA) plays an important sentinel and protective role in the recognition and clearance of enteric pathogens. In addition to serving as a first line of defense, SIgA and SIgA x antigen immune complexes are selectively transported across Peyer's patches to underlying dendritic cells in the mucosa-associated lymphoid tissue, contributing to immune surveillance and immunomodulation. To explain the unexpected transport of immune complexes in face of the large excess of free SIgA in secretions, we postulated that SIgA experiences structural modifications upon antigen binding. To address this issue, we associated specific polymeric IgA and SIgA with antigens of various sizes and complexity (protein toxin, virus, bacterium). Compared with free antibody, we found modified sensitivity of the three antigens assayed after exposure to proteases from intestinal washes. Antigen binding further impacted on the immunoreactivity toward polyclonal antisera specific for the heavy and light chains of the antibody, as a function of the antigen size. These conformational changes promoted binding of the SIgA-based immune complex compared with the free antibody to cellular receptors (Fc alphaRI and polymeric immunoglobulin receptor) expressed on the surface of premyelocytic and epithelial cell lines. These data reveal that antigen recognition by SIgA triggers structural changes that confer to the antibody enhanced receptor binding properties. This identifies immune complexes as particular structural entities integrating the presence of bound antigens and adds to the known function of immune exclusion and mucus anchoring by SIgA.
Resumo:
Waddlia chondrophila is an obligate intracellular bacterium of the Chlamydiales order. W. chondrophila has been isolated twice from aborted bovine foetuses and a serological study supported the abortigenic role of W. chondrophila in bovine species. Recently, we observed a strong association between the presence of anti-Waddlia antibodies and human miscarriage. To further investigate the pathogenic potential of W. chondrophila in humans, we studied the entry and the multiplication of this Chlamydia-like organism in human macrophages. Confocal and electron microscopy confirmed that W. chondrophila is able to enter human monocyte-derived macrophages. Moreover, W. chondrophila multiplied readily within macrophages. The proportion of infected macrophages increased from 13% at day 0 to 96% at day 4, and the mean number of bacteria per macrophage increased by 3logs in 24h. Intracellular growth of W. chondrophila was associated with a significant cytopathic effect. Thus, W. chondrophila may enter and grow rapidly within human macrophages, inducing lysis of infected cells. Since macrophages are one of the major components of the innate immune response, these findings indirectly suggest the possible human pathogenicity of W. chondrophila.
Resumo:
Résumé Le staphylocoque doré est un pathogène responsable d'une grande variété de maladies chez l'être humain. Il est extrêmement bien équipé de facteurs de virulence, dont les adhésines. Jusqu'à présent, 21 protéines liant des composants de tissus de l'hôte ("microbial surface components reacting with adherence matrix molecules, MSCRAMM") ont été identifiées, par exemple le "clumping factor" A (CIfA) ou la "fibronectin-binding protein" A (FnBPA). Néanmoins, pour la plupart de ces protéines, leur rôle dans la pathogénie des infections à staphylocoque doré reste à être élucidé. Le but de cette thèse est de contribuer à ce processus. Premièrement, les "MSCRAMM" CIfA, CIfB, FnBPA, FnBPB, Cna, SpA, Pls, SdrC, SdrD, SdrE, SasD, SasE, SasF, SasG, Sasl, SasJ et SasK ont été exprimés dans une bactérie substitut, Lactococcus lactis, et testés pour leurs propriétés adhésives et leur pathogénicité dans un modèle d'endocardite expérimentale (voir chapitre 1). Cette technique a préalablement été utilisée avec succès et a l'avantage d'éviter le contexte complexe des redondances et systèmes de régulations propres au staphylocoque doré. Les résultats montrent que, de tous les facteurs de virulence testés, seuls CIfA et FnBPA sont d'importance primordiale dans le développement d'endocardite expérimentale. En ce qui concerne l'internalisation dans les cellules endothéliales, seulement FnPBA et FnBPB en sont capables. En outre, l'adhérence à chacun des ligands testés (fibrinogène, fibronectine, kératine, élastine, collagène, et les caillots de fibrine et plaquettes) est très spécifique et est médiée par une ou plusieures adhésines provenant du staphylocoque doré. Par conséquence, ces protéines pourraient représenter des cibles potentielles pour de futures thérapies anti-adhésives contre le staphylocoque doré. Deuxièmement, l'expression des facteurs de virulence décrits dans le chapitre 1 par les souches recombinantes de lactocoques a été vérifiée par une nouvelle méthode utilisant la spectrométrie de masse (voir chapitre 2). L'expression de toutes ces protéines par les souches recombinantes a pu être confirmée. Cette méthode pourrait être de grande valeur dans la vérification de la présence de protéines quelconques dans toutes sortes d'applications. Troisièmement, deux facteurs de virulence du staphylocoque, CIfA et une forme tronquée de FnBPA, ont été exprimés de façon simultanée dans une souche recombinante de lactocoque (voir chapitre 3}. Contrairement à une souche exprimant la FnBPA entière, une souche exprimant la forme tronquée de FnPBA, qui ne contient plus le domaine capable de lier le fibrinogène, perd complètement sa capacité d'infecter dans le modèle d'endocardite expérimentale. Par contre, il est montré que, en cas de complémentation de la forme tronquée de FnPBA avec le domaine de liaison au fibrinogène de CIfA dans la souche double recombinante, le phénotype intégral de FnBPA est récupéré. En conséquence, les facteurs de virulence sont capables de coopérer dans le but de la pathogénie des infections à staphylocoque doré. Summary Staphylococcus aureus is a human pathogen causing a wide variety of disease. It is extremely well equipped with both secreted and surface-attached virulence factors, which can act as adhesins to host tissues. In total, twenty-one microbial surface components reacting with adherence matrix molecules (MSCRAMMs) have been identified, so far. These include well-characterized adhesins such as clumping factor A (CIfA) or fibronectin-binding protein A (FnBPA). However, for most of them their potential role in the pathogenesis of staphylococcal infections remains to be elucidated. This has been attempted in this thesis work. Firstly, the staphylococcal MSCRAMMs CIfA, CIfB, FnBPA, FnBPB, Cna, SpA, Pls, SdrC, SdrD, SdrE, SasD, SasE, SasF, SasG, Sasl, SasJ, and SasK have been expressed in a surrogate bacterium, Lactococcus lactis, and tested for their in vitro adherence properties and their pathogenicity in the rat model of experimental endocarditis (see chapter 1). This model has successfully been used previously, and has the advantage of bypassing the complex S. aureus background of redundancies and differential regulation. Here, it is shown that of the seventeen tested potential virulence factors, only CIfA and FnBPA are critical for the pathogenesis of experimental endocarditis in rats, while internalization into bovine endothelial cells is mediated exclusively by FnBPA and FnBPB. In addition, the adherence to specific host ligands (fibrinogen, fibronectin, keratin, elastin, collagen, and fibrin-platelet clots) is highly specific and mediated by one or few staphylococcal adhesins, respectively. Thus, these surface proteins may represent potential targets for an anti-adhesive strategy against S. aureus infections. Secondly, the expression of the staphylococcal proteins by L. lactis recombinants described in chapter 1 was tested by a novel method using mass spectrometry (see chapter 2). The expression of all the staphylococcal proteins by the respective recombinant lactococcal strain could be confirmed. This method may prove to be of great value in the confirmation of the presence of any given protein in various experimental settings. Thirdly, two staphylococcal virulence factors, CIfA and a truncated form of FnBPA, were expressed simultaneously in one recombinant lactococcal strain (see chapter 3). In contrast to a recombinant strain expressing full-length FnPBA, a recombinant strain expressing a truncated FnPBA, lacking the domain capable of binding fibrinogen, completely lost infectivity in experimental endocarditis. However, it is shown that the complementation of the truncated form of FnBPA with the fibrinogenbinding domain of CIfA in a double recombinant strain results in the recovery of the complete phenotype of full-length FnBPA. Thus, virulence factors can cooperate in the pathogenesis of staphylococcal infections.
Resumo:
Staphylococcus aureus can colonize and infect both humans and animals, but isolates from both hosts tend to belong to different lineages. Our recent finding of bovine-adapted S. aureus showing close genetic relationship to the human S. aureus clonal complex 8 (CC8) allowed us to examine the genetic basis of host adaptation in this particular CC. Using total chromosome microarrays, we compared the genetic makeup of 14 CC8 isolates obtained from cows suffering subclinical mastitis, with nine CC8 isolates from colonized or infected human patients, and nine S. aureus isolates belonging to typical bovine CCs. CC8 isolates were found to segregate in a unique group, different from the typical bovine CCs. Within this CC8 group, human and bovine isolates further segregated into three subgroups, among which two contained a mix of human and bovine isolates, and one contained only bovine isolates. This distribution into specific clusters and subclusters reflected major differences in the S. aureus content of mobile genetic elements (MGEs). Indeed, while the mixed human-bovine clusters carried commonly human-associated β-hemolysin converting prophages, the bovine-only isolates were devoid of such prophages but harbored an additional new non-mec staphylococcal cassette chromosome (SCC) unique to bovine CC8 isolates. This composite cassette carried a gene coding for a new LPXTG-surface protein sharing homologies with a protein found in the environmental bacterium Geobacillus thermoglucosidans. Thus, in contrast to human CC8 isolates, the bovine-only CC8 group was associated with the combined loss of β-hemolysin converting prophages and gain of a new SCC probably acquired in the animal environment. Remaining questions are whether the new LPXTG-protein plays a role in bovine colonization or infection, and whether the new SCC could further acquire antibiotic-resistance genes and carry them back to human.
Resumo:
Chlamydia trachomatis is the leading cause of bacterial sexually transmitted disease worldwide, and despite significant advances in chlamydial research, a prophylactic vaccine has yet to be developed. This Gram-negative obligate intracellular bacterium, which often causes asymptomatic infection, may cause pelvic inflammatory disease (PID), ectopic pregnancies, scarring of the fallopian tubes, miscarriage, and infertility when left untreated. In the genital tract, Chlamydia trachomatis infects primarily epithelial cells and requires Th1 immunity for optimal clearance. This review first focuses on the immune cells important in a chlamydial infection. Second, we summarize the research and challenges associated with developing a chlamydial vaccine that elicits a protective Th1-mediated immune response without inducing adverse immunopathologies.
Resumo:
Composts are the products obtained after the aerobic degradation of different types of organic matter waste and can be used as substrates or substrate/soil amendments for plant cultivation. There is a small but increasing number of reports that suggest that foliar diseases may be reduced when using compost, rather than standard substrates, as growing medium. The purpose of this study was to examine the gene expression alteration produced by the compost to gain knowledge of the mechanisms involved in compost-induced systemic resistance. A compost from olive marc and olive tree leaves was able to induce resistance against Botrytis cinerea in Arabidopsis, unlike the standard substrate, perlite. Microarray analyses revealed that 178 genes were differently expressed, with a fold change cut-off of 1, of which 155 were up-regulated and 23 were down-regulated in compost-grown, as against perlite-grown plants. A functional enrichment study of up-regulated genes revealed that 38 Gene Ontology terms were significantly enriched. Response to stress, biotic stimulus, other organism, bacterium, fungus, chemical and abiotic stimulus, SA and ABA stimulus, oxidative stress, water, temperature and cold were significantly enriched, as were immune and defense responses, systemic acquired resistance, secondary metabolic process and oxireductase activity. Interestingly, PR1 expression, which was equally enhanced by growing the plants in compost and by B. cinerea inoculation, was further boosted in compost-grown pathogen-inoculated plants. Compost triggered a plant response that shares similarities with both systemic acquired resistance and ABA-dependent/independent abiotic stress responses.
Resumo:
The efficacy of inoculation of single pure bacterial cultures into complex microbiomes, for example, in order to achieve increased pollutant degradation rates in contaminated material (that is, bioaugmentation), has been frustrated by insufficient knowledge on the behaviour of the inoculated bacteria under the specific abiotic and biotic boundary conditions. Here we present a comprehensive analysis of genome-wide gene expression of the bacterium Sphingomonas wittichii RW1 in contaminated non-sterile sand, compared with regular suspended batch growth in liquid culture. RW1 is a well-known bacterium capable of mineralizing dibenzodioxins and dibenzofurans. We tested the reactions of the cells both during the immediate transition phase from liquid culture to sand with or without dibenzofuran, as well as during growth and stationary phase in sand. Cells during transition show stationary phase characteristics, evidence for stress and for nutrient scavenging, and adjust their primary metabolism if they were not precultured on the same contaminant as found in the soil. Cells growing and surviving in sand degrade dibenzofuran but display a very different transcriptome signature as in liquid or in liquid culture exposed to chemicals inducing drought stress, and we obtain evidence for numerous 'soil-specific' expressed genes. Studies focusing on inoculation efficacy should test behaviour under conditions as closely as possible mimicking the intended microbiome conditions.
Resumo:
Restricted bioavailability of copper in certain environments can interfere with cellular respiration because copper is an essential cofactor of most terminal oxidases. The global response of the metabolically versatile bacterium and opportunistic pathogen Pseudomonas aeruginosa to copper limitation was assessed under aerobic conditions. Expression of cioAB (encoding an alternative, copper-independent, cyanide-resistant ubiquinol oxidase) was upregulated, whereas numerous iron uptake functions (including the siderophores pyoverdine and pyochelin) were expressed at reduced levels, presumably reflecting a lower demand for iron by respiratory enzymes. Wild-type P. aeruginosa was able to grow aerobically in a defined glucose medium depleted of copper, whereas a cioAB mutant did not grow. Thus, P. aeruginosa relies on the CioAB enzyme to cope with severe copper deprivation. A quadruple cyo cco1 cco2 cox mutant, which was deleted for all known heme-copper terminal oxidases of P. aeruginosa, grew aerobically, albeit more slowly than did the wild type, indicating that the CioAB enzyme is capable of energy conservation. However, the expression of a cioA'-'lacZ fusion was less dependent on the copper status in the quadruple mutant than in the wild type, suggesting that copper availability might affect cioAB expression indirectly, via the function of the heme-copper oxidases.
Resumo:
Pseudomonas sp. strain B13 is a bacterium known to degrade chloroaromatic compounds. The properties to use 3- and 4-chlorocatechol are determined by a self-transferable DNA element, the clc element, which normally resides at two locations in the cell's chromosome. Here we report the complete nucleotide sequence of the clc element, demonstrating the unique catabolic properties while showing its relatedness to genomic islands and integrative and conjugative elements rather than to other known catabolic plasmids. As far as catabolic functions, the clc element harbored, in addition to the genes for chlorocatechol degradation, a complete functional operon for 2-aminophenol degradation and genes for a putative aromatic compound transport protein and for a multicomponent aromatic ring dioxygenase similar to anthranilate hydroxylase. The genes for catabolic functions were inducible under various conditions, suggesting a network of catabolic pathway induction. For about half of the open reading frames (ORFs) on the clc element, no clear functional prediction could be given, although some indications were found for functions that were similar to plasmid conjugation. The region in which these ORFs were situated displayed a high overall conservation of nucleotide sequence and gene order to genomic regions in other recently completed bacterial genomes or to other genomic islands. Most notably, except for two discrete regions, the clc element was almost 100% identical over the whole length to a chromosomal region in Burkholderia xenovorans LB400. This indicates the dynamic evolution of this type of element and the continued transition between elements with a more pathogenic character and those with catabolic properties.
Resumo:
Waddlia chondrophila is a strict intracellular microorganism belonging to the order Chlamydiales that has been isolated twice from aborted bovine fetuses, once in USA and once in Germany. This bacterium is now considered as an abortigenic agent in cattle. However, no information is available regarding the presence of this bacterium in Africa. Given the low sensitivity of cell culture to recover such an obligate intracellular bacterium, molecular-based diagnostic approaches are warranted. This report describes the development of a quantitative SYBR Green real-time PCR assay targeting the recA gene of W. chondrophila. Analytical sensitivity was 10 copies of control plasmid DNA per reaction. No cross-amplification was observed when testing pathogens that can cause abortion in cattle. The PCR exhibited a good intra-run and inter-run reproducibility. This real-time PCR was then applied to 150 vaginal swabs taken from Tunisian cows that have aborted. Twelve samples revealed to be Waddlia positive, suggesting a possible role of this bacterium in this setting. This new real-time PCR assay represents a diagnostic tool that may be used to further study the prevalence of Waddlia infection.
Resumo:
Ascidians have developed multiple defensive strategies mostly related to physical, nutritional or chemical properties of the tunic. One of such is chemical defense based on secondary metabolites. We analyzed a series of colonial Antarctic ascidians from deep-water collections belonging to the genera Aplidium and Synoicum to evaluate the incidence of organic deterrents and their variability. The ether fractions from 15 samples including specimens of the species A. falklandicum, A. fuegiense, A. meridianum, A. millari and S. adareanum were subjected to feeding assays towards two relevant sympatric predators: the starfish Odontaster validus, and the amphipod Cheirimedon femoratus. All samples revealed repellency. Nonetheless, some colonies concentrated defensive chemicals in internal body-regions rather than in the tunic. Four ascidian-derived meroterpenoids, rossinones B and the three derivatives 2,3-epoxy-rossinone B, 3-epi-rossinone B, 5,6-epoxy-rossinone B, and the indole alkaloids meridianins AG, along with other minoritary meridianin compounds were isolated from several samples. Some purified metabolites were tested in feeding assays exhibiting potent unpalatabilities, thus revealing their role in predation avoidance. Ascidian extracts and purified compound-fractions were further assessed in antibacterial tests against a marine Antarctic bacterium. Only the meridianins showed inhibition activity, demonstrating a multifunctional defensive role. According to their occurrence in nature and within our colonial specimens, the possible origin of both types of metabolites is discussed.
Resumo:
Ascidians have developed multiple defensive strategies mostly related to physical, nutritional or chemical properties of the tunic. One of such is chemical defense based on secondary metabolites. We analyzed a series of colonial Antarctic ascidians from deep-water collections belonging to the genera Aplidium and Synoicum to evaluate the incidence of organic deterrents and their variability. The ether fractions from 15 samples including specimens of the species A. falklandicum, A. fuegiense, A. meridianum, A. millari and S. adareanum were subjected to feeding assays towards two relevant sympatric predators: the starfish Odontaster validus, and the amphipod Cheirimedon femoratus. All samples revealed repellency. Nonetheless, some colonies concentrated defensive chemicals in internal body-regions rather than in the tunic. Four ascidian-derived meroterpenoids, rossinones B and the three derivatives 2,3-epoxy-rossinone B, 3-epi-rossinone B, 5,6-epoxy-rossinone B, and the indole alkaloids meridianins AG, along with other minoritary meridianin compounds were isolated from several samples. Some purified metabolites were tested in feeding assays exhibiting potent unpalatabilities, thus revealing their role in predation avoidance. Ascidian extracts and purified compound-fractions were further assessed in antibacterial tests against a marine Antarctic bacterium. Only the meridianins showed inhibition activity, demonstrating a multifunctional defensive role. According to their occurrence in nature and within our colonial specimens, the possible origin of both types of metabolites is discussed.
Resumo:
Mycelia have been recently shown to actively transport polycyclic aromatic hydrocarbons (PAH) in water-unsaturated soil over the range of centimeters, thereby efficiently mobilizing hydrophobic PAH beyond their purely diffusive transport in air and water. However, the question if mycelia-based PAH transport has an effect on PAH biodegradation was so far unsolved. To address this, we developed a laboratory model microcosm mimicking air-water interfaces in soil. Chemical analyses demonstrated transport of the PAH fluorene (FLU) by the mycelial oomycete Pythium ultimum that was grown along the air-water interfaces. Furthermore, degradation of mycelia-transported FLU by the bacterium Burkholderia sartisoli RP037-mChe was indicated. Since this organism expresses eGFP in response to a FLU flux to the cell, it was also as a bacterial reporter of FLU bioavailability in the vicinity of mycelia. Confocal laser scanning microscopy (CLSM) and image analyses revealed a significant increase of eGFP expression in the presence of P. ultimum compared to controls without mycelia or FLU. Hence, we could show that physically separated FLU becomes bioavailable to bacteria after transport by mycelia. Experiments with silicon coated glass fibers capturing mycelia-transported FLU guided us to propose a three-step mechanism of passive uptake, active transport and diffusion-driven release. These experiments were also used to evaluate the contributions of these individual steps to the overall mycelial FLU transport rate.
Resumo:
Studies of the structural basis of protein thermostability have produced a confusing picture. Small sets of proteins have been analyzed from a variety of thermophilic species, suggesting different structural features as responsible for protein thermostability. Taking advantage of the recent advances in structural genomics, we have compiled a relatively large protein structure dataset, which was constructed very carefully and selectively; that is, the dataset contains only experimentally determined structures of proteins from one specific organism, the hyperthermophilic bacterium Thermotoga maritima, and those of close homologs from mesophilic bacteria. In contrast to the conclusions of previous studies, our analyses show that oligomerization order, hydrogen bonds, and secondary structure play minor roles in adaptation to hyperthermophily in bacteria. On the other hand, the data exhibit very significant increases in the density of salt-bridges and in compactness for proteins from T.maritima. The latter effect can be measured by contact order or solvent accessibility, and network analysis shows a specific increase in highly connected residues in this thermophile. These features account for changes in 96% of the protein pairs studied. Our results provide a clear picture of protein thermostability in one species, and a framework for future studies of thermal adaptation.
Resumo:
The distribution and diversity of acidophilic bacteria of a tailings impoundment at the La Andina copper mine, Chile, was examined. The tailings have low sulfide (1.7% pyrite equivalent) and carbonate (1.4% calcite equivalent) contents and are stratified into three distinct zones: a surface (0-70-80 cm) `oxidation zone' characterized by low-pH (2.5-4), a `neutralization zone' (70-80 to 300-400 cm) and an unaltered `primary zone' below 400 cm. A combined cultivation-dependent and biomolecular approach (terminal restriction enzyme fragment length polymorphism and 16S rRNA clone library analysis) was used to characterize the indigenous prokaryotic communities in the mine tailings. Total cell counts showed that the microbial biomass was greatest in the top 125 cm of the tailings. The largest numbers of bacteria (10(9) g(-1) dry weight of tailings) were found at the oxidation front (the junction between the oxidation and neutralization zones), where sulfide minerals and oxygen were both present. The dominant iron-/sulfur-oxidizing bacteria identified at the oxidation front included bacteria of the genus Leptospirillum (detected by molecular methods), and Gram-positive iron-oxidizing acidophiles related to Sulfobacillus (identified both by molecular and cultivation methods). Acidithiobacillus ferrooxidans was also detected, albeit in relatively small numbers. Heterotrophic acidophiles related to Acidobacterium capsulatum were found by molecular methods, while another Acidobacterium-like bacterium and an Acidiphilium sp. were isolated from oxidation zone samples. A conceptual model was developed, based on microbiological and geochemical data derived from the tailings, to account for the biogeochemical evolution of the Piuquenes tailings impoundment.