992 resultados para POLY(DIMETHYLSILOXANE)
Resumo:
A poly(Nile blue) modified glassy carbon electrode (PNBMGCE) was fabricated by electropolymerisation of Nile blue (NB) monomer using cyclic voltammetry (CV) and was used for the determination of paracetamol (ACOP), tramadol (TRA) and caffeine (CAF). The electrochemical investigations showed that PNB - film formed on the surface of glassy carbon electrode (GCE) improved the electroactive surface area and displayed a remarkable increase in the peak current and a substantial decrease in over potential of ACOP, TRA and CAF when compared to bare GCE. The dependence of peak current and potential on pH, sweep rate and concentration were also investigated at the surface of PNBMGCE. It showed good sensitivity and selectivity in a wide linear range from 2.0 x 10(-7) to 1.62 x 10(-5) M, 1.0 x 10(-6) to 3.1 x 10(-4) M and 8.0 x 10(-7) to 2.0 x 10(-5) M, with detection limits of 0.08, 0.5 and 0.1 mu M, for ACOP, TRA and CAF, respectively. The PNBMGCE was also successfully applied for the determination of ACOP, TRA and CAF in pharmaceutical dosage forms. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
Toward preparing strong multi-biofunctional materials, poly(ethylenimine) (PEI) conjugated graphene oxide (GO_PEI) was synthesized using poly(acrylic acid) (PAA) as a spacer and incorporated in poly( e-caprolactone) (PCL) at different fractions. GO_PEI significantly promoted the proliferation and formation of focal adhesions in human mesenchymal stem cells (hMSCs) on PCL. GO_PEI was highly potent in inducing stem cell osteogenesis leading to near doubling of alkaline phosphatase expression and mineralization over neat PCL with 5% filler content and was approximate to 50% better than GO. Remarkably, 5% GO_ PEI was as potent as soluble osteoinductive factors. Increased adsorption of osteogenic factors due to the amine and oxygen containing functional groups on GO_ PEI augment stem cell differentiation. GO_ PEI was also highly efficient in imparting bactericidal activity with 85% reduction in counts of E. coli colonies compared to neat PCL at 5% filler content and was more than twice as efficient as GO. This may be attributed to the synergistic effect of the sharp edges of the particles along with the presence of the different chemical moieties. Thus, GO_ PEI based polymer composites can be utilized to prepare bioactive resorbable biomaterials as an alternative to using labile biomolecules for fabricating orthopedic devices for fracture fixation and tissue engineering.
Resumo:
The interactions between poly(vinylpyrrolidone) (PVP) and the reversed micelles composed of water, AOT, and n-heptane are investigated with the aid of phase diagram, measurements of conductivity and viscosity, Fourier transform infrared (FTIR) spectrum, and dynamic light scattering (DLS). The phase diagrams of water/AOT/heptane in the presence of and absence of PVP are given. The conductivity of the water/AOT/heptane reversed micelle without PVP initially increases and then decreases with the increase of water content, ω0 (the molar ratio of water to AOT), while the plots of conductivity (K) versus ω0 of the reversed micelle in the presence of PVP depend on the PVP concentrations. The plot of K versus ω0 with 2.0%wt PVP is similar to that without PVP. Only the ω0,max (the water content that the maximum conductivity corresponds to) is larger than that without PVP. Nevertheless, the conductivity of the reversed micelle containing more than 4%wt PVP always rises with the increase of the water content in the measured range. The DLS results indicate that the hydrodynamic radius (Rh) in the presence and absence of PVP rises with the increase of ω0. The plots with PVP and without PVP have almost the same value when ω0<17; and after that, it quickly increases with the increase of ω0. It is interesting to find that there is almost no effect of the PVP concentration on the viscosity and Rh of the reversed micelle at ω0 = 15. The FTIR results suggest that the contents of SO3--bound water and Na+-bound water both decrease with PVP added, while the content of the bulky-like water increases. However, the trapped water in the hydrophobic chain of the surfactant is nearly unaffected by PVP. It is also found from the FTIR that the carbonyl group stretching vibration of AOT is fitted into two sub-peaks, which center at 1740 and 1729 cm-1, corresponding to the trans and cis conformations of AOT, respectively.
Resumo:
Transport measurements were performed on individual PECVD grown MWCNT nanobridge structures. Temperature dependent conductance measurements show that as the temperature is decreased, the conductance also decreases. The nanotubes were able to carry high current densities with the observed maximum at ∼108 A/cm2. High volatile measurements reveal that the PECVD grown MWCNTs break down in segments of nanotube shells.
Resumo:
Poly-methylmethacrylate suspended dispersion was used to fabricate multiwalled carbon nanotube (MWCNT) bridges. Using this technique, nanotubes could be suspended between metal electrodes without any chemical etching of the substrate. The electrical measurement on suspended MWCNT bridges shows that the room temperature resistance ranges from under a kω to a few Mω.
Resumo:
175 p. : il.
Resumo:
A series of bacterial cellulose-poly(2-hydroxyethyl methacrylate) nanocomposite films was prepared by in situ radical polymerization of 2-hydroxyethyl methacrylate (HEMA), using variable amounts of poly(ethylene glycol) diacrylate (PEGDA) as crosslinker. Thin films were obtained, and their physical, chemical, thermal, and mechanical properties were evaluated. The films showed improved translucency compared to BC and enhanced thermal stability and mechanical performance when compared to poly(2-hydroxyethyl methacrylate) (PHEMA). Finally, BC/PHEMA nanocomposites proved to be nontoxic to human adipose-derived mesenchymal stem cells (ADSCs) and thus are pointed as potential dry dressings for biomedical applications.
Resumo:
Temperature-sensitive poly(N-isopropylacrylamide) (PNIPA) nanohydrogels were synthesized by nanoemulsion polymerization in water-in-oil systems. Several cross-linking degrees and the incorporation of acrylic acid as comonomer at different concentrations were tested to produce nanohydrogels with a wide range of properties. The physicochemical properties of PNIPA nanohydrogels, and their relationship with the swelling-collapse behaviour, were studied to evaluate the suitability of PNIPA nanoparticles as smart delivery systems (for active packaging). The swelling-collapse transition was analyzed by the change in the optical properties of PNIPA nanohydrogels using ultraviolet-visible spectroscopy. The thermodynamic parameters associated with the nanohydrogels collapse were calculated using a mathematical approach based on the van't Hoff analysis, assuming a two-state equilibrium (swollen to collapsed). A mathematical model is proposed to predict both the thermally induced collapse, and the collapse induced by the simultaneous action of two factors (temperature and pH, or temperature and organic solvent concentration). Finally, van't Hoff analysis was compared with differential scanning calorimetry. The results obtained allow us to solve the problem of determining the molecular weight of the structural repeating unit in cross-linked NIPA polymers, which, as we show, can be estimated from the ratio of the molar heat capacity (obtained from the van't Hoff analysis) to the specific heat capacity (obtained from calorimetric measurements).
Resumo:
Excimer laser ablation technique was introduced into this work to fabricate a passive planar micromixer on the PMMA substrate. T-junction shaped and width-changed S-shaped microchannels were both designed in this micromixer to enhance mixing effect. The mixing experiment of distilled water and Rhodamine B with injection flow rate of 500 and 1,500 mu m/s validates the mixing effectivity of this micromixer, and indicates the feasibility of excimer laser ablation in the microfabrication of mu-TAS device.
Resumo:
The miscibility and phase behavior of poly(4-vinylphenol) (PVPh) with poly(vinyl methyl ketone) (PVMK) was investigated by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). It was shown that all blends of PVPh/PVMK are totally miscible. A DSC study showed the apparition of a single glass transition (T-g) over their entire composition range. When the amount of PVPh exceeds 50% in blends, the obtained T(g)s are found to be significantly higher than those observed for each individual component of the mixture, indicating that these blends are capable of forming interpolymer complexes. FTIR analysis revealed the existence of preferential specific interactions via hydrogen bonding between the hydroxyl and carbonyl groups, which intensified when the amount of PVPh was increased in blends. Furthermore, the quantitative FTIR study carried out for PVPh/PVMK blends was also performed for the vinylphenol (VPh) and vinyl methyl ketone (VMK) functional groups. These results were also established by scanning electron microscopy study (SEM).