472 resultados para PEDOT:PSS
Resumo:
Objectives To prospectively evaluate histopathologic, blood cellular, serological and clinical changes in response to abatacept treatment in patients with primary Sjögren's syndrome (pSS). Methods Blood, saliva and minor salivary gland biopsies were obtained before and after the last of 8 doses of abatacept in 11 pSS patients. The histologic data evaluated the number of lymphocytic foci and of B- and T-cell subtypes (CD20(+) , CD3(+) , CD4(+) , CD8(+) ). The numbers of FoxP3(+) regulatory T-cells were measured and the FoxP3 /CD 3 ratio was calculated. Histologic data were compared with results from peripheral blood and with changes in saliva secretion. Results The numbers of lymphocytic foci decreased significantly (p=0.041). Numbers of local FoxP3(+) T-cells decreased significantly in percentage of total lymphocytic infiltrates (p=0.037). In the peripheral blood B-cells increased (p=0.038). This was due to an expansion of the naïve B cell pool (p=0.034). When adjusting for disease duration, an increase was also noted for total lymphocytes (p=0.044) and for CD 4 cells (p=0.009). Gamma globulins decreased significantly (p=0.005), but IgG reduction did not reach significance. Adjusted for disease duration, saliva production increased significantly (p=0.029). Conclusions CTLA4-Ig treatment significantly reduces glandular inflammation in pSS, induces several celluar changes and increases saliva production. Remarkably, this increase in saliva production is significantly influenced by disease duration.
Resumo:
The Rosetta spacecraft will arrive at comet 67P/Churyumov–Gerasimenko in 2014 and will escort the comet along its journey around the Sun. The predicted outgassing rate of the comet and the solar wind properties close to its perihelion at 1.24 AU lead to the expectation that a cometary bow shock will form during the escort phase. Since the forecasts of the subsolar stand off distances differ, this study revisits selected models and presents hybrid simulations of the comet–solar wind interaction region performed with the A.I.K.E.F. code. It is shown that small variations of the solar wind parameters will shift the bow shock position considerably. In addition, a model is presented that reproduces the bow shock distances observed in the hybrid simulations.
Resumo:
The likelihood that comets may have delivered part of the water to Earth has been reinforced by the recent observation of the earth-like D/H ratio in Jupiter-family comet 103P/Hartley 2 by Hartogh et al. (2011). Prior to this observation, results from several Oort cloud comets indicated a factor of 2 enrichment of deuterium relative to the abundance at Earth. The European Space Agency’s Rosetta spacecraft will encounter comet 67P/Churyumov-Gerasimenko, another Jupiter-family comet of likely Kuiper belt origin, in 2014 and accompany it from almost aphelion to and past perihelion. Onboard Rosetta is the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) which consists of two mass spectrometers and a pressure sensor [Balsiger et al. 2007]. With its unprecedented mass resolution, for a space-borne instrument, the Double Focusing Mass Spectrometer (DFMS), one of the major subsystems of ROSINA, will be able to obtain unambiguously the ratios of the isotopes in water from in situ measurements in the coma around the comet. We will discuss the performance of this sensor on the basis of measurements of the terrestrial hydrogen and oxygen isotopic ratios performed with the flight spare instrument in the lab. We also show that the instrument on Rosetta is capable of measuring the D/H even in the very low density water background released by the spacecraft. This capability demonstrates that ROSINA should obtain very sensitive measurements of these ratios in the cometary environment. These measurements will allow detection of fractionation as function of the distance from the nucleus as well as fractionation due to mechanisms that are correlated with heliocentric distance.
Resumo:
The solar wind continuously flows out from the Sun, filling interplanetary space and directly interacting with the surfaces of small planetary bodies and other objects throughout the solar system. A significant fraction of these ions backscatter from the surface as energetic neutral atoms (ENAs). The first observations of these ENA emissions from the Moon were recently reported from the Interstellar Boundary Explorer (IBEX). These observations yielded a lunar ENA albedo of ˜10% and showed that the Moon reflects ˜150 metric tons of neutral hydrogen per year. More recently, a survey of the first 2.5 years of IBEX observations of lunar ENAs was conducted for times when the Moon was in the solar wind. Here, we present the first IBEX ENA observations when the Moon is inside the terrestrial magnetosheath and compare them with observations when the Moon is in the solar wind. Our analysis shows that: (1) the ENA intensities are on average higher when the Moon is in the magnetosheath, (2) the energy spectra are similar above ~0.6* solar wind energy but below there are large differences of the order of a factor of 10, (3) the energy spectra resemble a power law with a "hump" at ˜0.6 * solar wind energy, and (4) this "hump" is broader when the Moon is in the magnetosheath. We explore potential scenarios to explain the differences, namely the effects of the topography of the lunar surface and the consequences of a very different Mach number in the solar wind versus in the magnetosheath.
Resumo:
The Moon appears bright in the sky as a source of energetic neutral atoms (ENAs). These ENAs have recently been imaged over a broad energy range both from near the lunar surface, by India's Chandrayaan-1 mission (CH-1), and from a much more distant Earth orbit by NASA's Interstellar Boundary Explorer (IBEX) satellite. Both sets of observations have indicated that a relatively large fraction of the solar wind is reflected from the Moon as energetic neutral hydrogen. CH-1's angular resolution over different viewing angles of the lunar surface has enabled measurement of the emission as a function of angle. IBEX in contrast views not just a swath but a whole quadrant of the Moon as effectively a single pixel, as it subtends even at the closest approach no more than a few degrees on the sky. Here we use the scattering function measured by CH-1 to model global lunar ENA emission and combine these with IBEX observations. The deduced global reflection is modestly larger (by a factor of 1.25) when the angular scattering function is included. This provides a slightly updated IBEX estimate of AH=0.11±0.06 for the global neutralized albedo, which is ˜25% larger than the previous values of 0.09±0.05, based on an assumed uniform scattering distribution.
Resumo:
Aim of the study In this study we examined the effects of Taiji on perceived stress and general self-efficacy (GSE), and investigated the mediating role of a Taiji-induced GSE increase on Taiji-related reduction of perceived stress. Materials and methods 70 healthy participants were randomly allocated either to the Taiji intervention group or the waiting list control group. The intervention lasted for 12 weeks comprising two Taiji classes per week. Before, shortly after, and two months after the intervention, we assessed the degree of perceived stress and GSE in all participants by employing the Perceived Stress Scale (PSS) and the GSE-Scale. Results Compared to controls, participants of the Taiji group showed a significantly stronger decrease of perceived stress and a higher increase in GSE from pre- to post-intervention assessment (PSS: p = 0.009; GSE: p = 0.006), as well as from pre-intervention to follow-up assessment (PSS: p = 0.018; GSE: p = 0.033). A mediator analysis based on a multiple regression approach revealed that a Taiji-related increase in GSE statistically mediated the reduction in perceived stress after Taiji as compared to baseline. Post hoc testing showed that the mediating effect of GSE was significant (p = 0.043). Conclusions Our findings confirm previously reported Taiji-related stress reducing and GSE enhancing effects with GSE increase mediating Taiji related reduction of perceived stress.
Resumo:
An experimental procedure for precise and accurate measurements of isotope abundances by a miniature laser ablation mass spectrometer for space research is described. The measurements were conducted on different untreated NIST standards and galena samples by applying pulsed UV laser radiation (266 nm, 3 ns and 20 Hz) for ablation, atomisation, and ionisation of the sample material. Mass spectra of released ions are measured by a reflectron-type time-of-flight mass analyser. A computer controlled performance optimiser was used to operate the system at maximum ion transmission and mass resolution. At optimal experimental conditions, the best relative accuracy and precision achieved for Pb isotope compositions are at the per mill level and were obtained in a range of applied laser irradiances and a defined number of accumulated spectra. A similar relative accuracy and precision was achieved in the study of Pb isotope compositions in terrestrial galena samples. The results for the galena samples are similar to those obtained with a thermal ionisation mass spectrometer (TIMS). The studies of the isotope composition of other elements yielded relative accuracy and precision at the per mill level too, with characteristic instrument parameters for each element. The relative accuracy and precision of the measurements is degrading with lower element/isotope concentration in a sample. For the elements with abundances below 100 ppm these values drop to the percent level. Depending on the isotopic abundances of Pb in minerals, 207Pb/206Pb ages with accuracy in the range of tens of millions of years can be achieved.
Resumo:
OBJECTIVE: (1) To compare maternal characteristics and psychological stress profile among African-American, Caucasian and Hispanic mothers who delivered very low birthweight infants. (2) To investigate associations between psychosocial factors, frequency of milk expression, skin-to-skin holding (STS), and lactation performance, defined as maternal drive to express milk and milk volume. STUDY DESIGN: Self-reported psychological questionnaires were given every 2 weeks after delivery over 10 weeks. Milk expression frequency, STS, and socioeconomic variables were collected. RESULT: Infant birthweight, education, and milk expression frequency differed between groups. Trait anxiety, depression and parental stress in a neonatal intensive care unit (PSS:NICU) were similar. African-American and Caucasian mothers reported the lowest scores in state anxiety and social desirability, respectively. Maternal drive to express milk, measured by maintenance of milk expression, correlated negatively with parental role alteration (subset of PSS:NICU) and positively with infant birthweight and STS. Milk volume correlated negatively with depression and positively with milk expression frequency and STS. CONCLUSION: Differences between groups were observed for certain psychosocial factors. The response bias to self-reported questionnaires between groups may not provide an accurate profile of maternal psychosocial profile. With different factors correlating with maintenance of milk expression and milk volume, lactation performance can be best enhanced with a multi-faceted intervention program, incorporating parental involvement in infant care, close awareness and management of maternal mental health, and encouragement for frequent milk expression and STS.
Resumo:
The emerging application of long-term and high-quality ECG recording requires alternative electrodes to improve the signal quality and recording capability of surface skin electrodes. The esophageal ECG has the potential to overcome these limitations but necessitates novel recorder and lead designs. The electrode material is of particular interest, since the material has to ensure conflicting requirements like excellent biopotential recording properties and inertness. To this end, novel electrode materials like PEDOT and silver-PDMS as well as established electrode materials such as stainless steel, platinum, gold, iridium oxide, titanium nitride, and glassy carbon were investigated by long-term electrochemical impedance spectroscopy and model-based signal analysis using the derived in vitro interfacial properties in conjunction with a dedicated ECG amplifier. The results of this novel approach show that titanium nitride and iridium oxide featuring microstructured surfaces did not degrade when exposed to artificial acidic saliva. These materials provide low electrode potential drifts and insignificant signal distortion superior to surface skin electrodes making them compatible with accepted standards for ambulatory ECG. They are superior to the noble and polarizable metals such as platinum, silver, and gold that induced more signal distortions and are superior to esophageal stainless steel electrodes that corrode in artificial saliva. The study provides rigorous criteria for the selection of electrode materials for prolonged ECG recording by combining long-term in vitro electrode material properties with ECG signal quality assessment.
Resumo:
Amine-containing phospholipid synthesis in Saccharomyces cerevisiae starts with the conversion of CDP-diacylglycerol (CDP-DAG) and serine to phosphatidylserine (PS) while phosphatidylinositol (PI) is formed from CDP-DAG and inositol (derived from inositol-1-phosphate). In this study a gene (CDS1) encoding CDP-DAG synthase in S. cerevisiae was isolated and identified. The CDS1 gene encodes the majority, if not all, of the synthase activity, and is essential for cell growth. Overexpression of the CDS1 gene resulted in an elevation in the apparent initial rate of synthesis and also steady-state level of PI relative to PS in both wild type yeast and the cds1 mutant. Down-regulation of CDS1 expression resulted in an inositol excretion phenotype and an opposite effect on the above phospholipid synthesis in the cds1 mutant. This regulation of phospholipid biosynthesis is mediated by changes of the phospholipid biosynthetic enzymes via a mechanism independent of the expression of the INO2-OPI1 regulatory genes. Reduction in the level of CDP-DAG synthase activity resulted in an increase in PS synthase activity which followed a similar change in the CHO1/PSS (encodes PS synthase) mRNA level. INO1 (encodes inositol-1-phosphate synthase) mRNA also increased but only after CDP-DAG synthase activity fell below the wild type level. PI synthase activity followed the decrease of the CDP-DAG synthase activity, but there was no parallel change in the level of PIS1 mRNA. A G$\sp{305}$/A$\sp{305}$ point mutation within the CDS1 gene which causes the cdg1 phenotype was identified. A human cDNA clone encoding CDP-DAG synthase activity was characterized by complementation of the yeast cds1 null mutant. ^