984 resultados para PATTERN-FORMATION
Resumo:
The embryonic peripheral nervous system of Drosophila contains two main types of sensory neurons: type I neurons, which innervate external sense organs and chordotonal organs, and type II multidendritic neurons, Here, we analyse the origin of the difference between type I and type II in the case of the neurons that depend on the proneural genes of the achaete-scute complex (ASC), We show that, in Notch(-) embryos, the type I neurons are missing while type nr neurons are produced in excess, indicating that the type I/type II choice relies on Notch-mediated cell communication, In contrast, both type I and type II neurons are absent in numb(-) embryos and after ubiquitous expression of tramtrack, indicating that the activity of numb and the absence of tramtrack are required to produce both external sense organ and multidendritic neural fates, The analysis of string(-) embryos reveals that when the precursors are unable to divide they differentiate mostly into type II neurons, indicating that the type II is the default neuronal fate, We also report a new mutant phenotype where the ASC-dependent neurons are converted into-type II neurons, providing evidence for the existence of one or more genes required for maintaining the alternative (type I) fate, Our results suggest that the same mechanism of type I/type II specification may operate at a late step of the ASC-dependent lineages, when multidendritic neurons arise as siblings of the external sense organ neurons and, at an early step, when other multidendritic neurons precursors arise as siblings of external sense organ precursors.
Resumo:
Vitamin D (VD), is a steroid hormone with multiple functions in the central nervous system (CNS), producing numerous physiological effects mediated by its receptor (VDR). Clinical and experimental studies have shown a link between VD dysfunction and epilepsy. Along these lines, the purpose of our work was to analyze the relative expression of VDR mRNA in the hippocampal formation of rats during the three periods of pilocarpine-induced epilepsy. Male Wistar rats were divided into five groups: (1) control group; rats that received saline 0.9%, i.p. and were killed 7 days after its administration (CTRL, n = 8), (2) SE group; rats that received pilocarpine and were killed 4 h after SE (SE, n = 8), (3) Silent group-7 days; rats that received pilocarpine and were killed 7 days after SE (SIL 7d, n = 8), (4) Silent group-14 days; rats that received pilocarpine and were killed 14 days after SE (SIL 14d, n = 8), (5) Chronic group; rats that received pilocarpine and were killed 60 days after the first spontaneous seizure, (chronic, n = 8). The relative expression of VDR mRNA was determined by real-time PCR. Our results showed an increase of the relative expression of VDR mRNA in the SIL 7 days, SIL 14 days and Chronic groups, respectively (0.060 +/- 0.024; 0.052 +/- 0.035; 0.085 +/- 0.055) when compared with the CTRL and SE groups (0.019 +/- 0.017; 0.019 +/- 0.025). These data suggest the VDR as a possible candidate participating in the epileptogenesis process of the pilocarpine model of epilepsy. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
A 45-year-old woman presented with a 3-year history of cutaneous lesions. Clinical examination revealed red-yellow to brownish infiltrated papules coalescing into annular-shaped plaques of several sizes with a hyperpigmented center affecting the abdomen and lower limbs, as well as multiple firm nodules on the right palm, elbows, and knees (Fig. 1a-c). The patient also reported sporadic arthralgia and low fever. She had been treated for leprosy for 2 years with multidrug therapy (clofazimine, dapsone, and rifampicin), with complete remission of the lesions during treatment, but recurrence after discontinuation. Histologic examination of a biopsy specimen taken from the cutaneous lesions showed an interstitial inflammatory infiltrate with the presence of many neutrophils and occasional foamy histiocytes (Fig. 2a). A pattern of perivascular eosinophilic fibrosis was observed in a biopsy specimen from a nodule (Fig. 2b). Special stains for acid-fast bacilli and fungi were negative. Laboratory findings included elevated immunoglobulin A (IgA) serum levels (1016 mg/dL; normal range, 69-382 mg/dL), elevated beta-globulin, and strong tuberculin reactivity. Normal or negative tests included direct immunofluorescence, serum immunofixation, anti-streptolysin O, and chest radiography. Autoimmune disorders and inflammatory intestinal diseases were excluded. The patient was treated with dapsone, 100 mg/day, with great improvement of the clinical picture. Hyperpigmented residual macules and some fibrotic nodules remained after 3 months.
Resumo:
The cytochrome P450-dependent covalent binding of radiolabel derived fi om phenytoin (DPH) and its phenol and catechol metabolites, 5-(4'-hydroxyphenyl)-5-phenylhydantoin (HPPH) and 5-(3',4'-dihydroxyphenyl)-5-phenylhydantoin (CAT), was examined in liver microsomes. Radiolabeled HPPH and CAT and unlabeled CAT were obtained from microsomal incubations and isolated by preparative HPLC. NADPH-dependent covalent binding was demonstrated in incubations of human liver microsomes with HPPH. When CAT was used as substrate, covalent adduct formation was independent of NADPH, was enhanced in the presence of systems generating reactive oxygen species, and was diminished under anaerobic conditions or in the presence of cytoprotective reducing agents. Fluorographic analysis showed that radiolabel derived from DPH and HPPH was selectively associated with proteins migrating with approximate relative molecular weights of 57-59 kDa and at the dye front (molecular weights < 23 kDa) on denaturing gels. Lower levels of radiolabel were distributed throughout the molecular weight range. In contrast, little selectivity was seen in covalent adducts formed from CAT. HPPH was shown to be a mechanism-based inactivator of P450, supporting the contention that a cytochrome P450 is one target of covalent binding. These results suggest that covalent binding of radiolabel derived from DPH in rat and human Liver microsomes occurs via initial P450-dependent catechol formation followed by spontaneous oxidation to quinone and semiquinone derivatives that ultimately react with microsomal protein. Targets for covalent binding may include P450s, though the catechol appears to be sufficiently stable to migrate out of the P450 active site to form adducts with other proteins. In conclusion, we have demonstrated that DPH can be bioactivated in human liver to metabolites capable of covalently binding to proteins. The relationship of adduct formation to DPH-induced hypersensitivity reactions remains to be clarified.
Resumo:
The reaction of the bis(1,2-diamine) copper(II) complexes of racemic propane-1,2-diamine (pn) and 2-methylpropane-1,2-diamine (dmen) with formaldehyde and nitroethane in methanol under basic conditions yields minor macrocyclic condensation products in addition to the major acyclic products. Where C-pendant methyl groups on the pair of coordinated diamines are in cis dispositions, the first -NH-CH2-C(CH3)(NO2)-CH2-NH- ring formation occurs at amine pairs distant from these C-methyl substituents, and further reaction to yield a macrocycle is not observed. However, where the C-methyl substituents are in trans dispositions, the chemistry proceeds to yield the macrocycle. Commencing with pn, trans-(6,13-diammonio-2,6,9,13-tetramethyl-1,4,7,10-tetraazacyclotetradecane)copper(II) perchlorate formed and crystallized in the space group P2(1)/n, with a 9.782(2), b 9.2794(6), c 17.017(4) Angstrom, beta 103.24(1)degrees. The copper ion is found in a square-planar environment, with the two methyl groups of the pn residues and the pairs of introduced pendant groups all in trans arrangements.
Resumo:
Non-astringent persimmon is rapidly expanding as a new fruit crop in warm subtropical regions of the world, Most research and development of this fruit crop has occurred in Japan, where there is a considerable amount of published literature on its performance. Much of this information is not readily accessible to other countries and needs to be interpreted and modified for other climatic regions. This paper reviews reproductive events from floral initiation to the completion of fruit growth. The timing and significance of these events is described in relation to the phenological cycle. Method of improving flowering, reducing fruit drop and altering the fruit maturity period are discussed. (C) 1997 Elsevier Science B.V.
Resumo:
The present study investigated the effects of bilateral adrenalectomy (ADX) on the synthesis of basic fibroblast growth factor (bFGF, FGF-2) mRNA and on the expression of its FGF receptor subtype-2 (FGFR2) mRNA after a 6-hydroxydopamine (6-OHDA)-induced lesion of nigrostriatal dopamine system. In previous papers we have demonstrated that corticosterone increases FGF-2 immunoreactivity mainly in the astrocytes of the substantia nigra [Chadi, G., Rosen, L., Cintra, A., Tinner, B., Zoli, M., Pettersson, R.F., Fuxe, K., 1993b. Corticosterone increases FGF-2 (bFGF) immunoreactivity in the substantia nigra of the rat. Neuroreport 4, 783-786.] and that 6-OHDA injected in the ventral midbrain upregulates FGF-2 synthesis in reactive astrocytes in the ascending dopamine pathways [Chadi, G., Cao, Y., Pettersson, R.F., Fuxe, K., 1994. Temporal and spatial increase of astroglial basic fibroblast growth factor synthesis after 6-hydroxydopamine-induced degeneration of the nigrostriatal dopamine neurons. Neuroscience 61, 891-910.]. Rats were adrenalectomized and received a 6-OHDA stereotaxical injection in the ventral midbrain 2 days later. Seven days after the dopamine lesion, Western blot analysis showed a decreased level of tyrosine hydroxylase in the lesioned side of the midbrain, an event that was not altered by ADX or corticosterone replacement. Moreover, the degeneration of nigral dopamine neurons, which was confirmed by the disappearance of acidic FGF (FGF-1) mRNA and the decrement of tyrosine hydroxylase mRNA labeled nigral neurons, was not altered by ADX. The FGF-2 protein (23 kDa isoform but not 21 kDa fraction) levels increased in the lesioned side of the ventral midbrain. This elevation was counteracted by ADX, an effect that was fully reversed by corticosterone replacement. In situ hybridization revealed that ADX counteracted the elevated FGF-2 mRNA levels in putative glial cells of the ipsilateral pars compacta of the substantia nigra and in the ventral tegmental area. The ADX also counteracted the increased density and intensity of the astroglial FGF-2 immunoreactive profiles within the lesioned pars compacta of the substantia nigra and the ventral tegmental area as determined by stereology. The stereotaxical mechanical needle insertion triggered the expression of FGFR2 mRNA in putative glial cells, spreading to the entire ipsilateral ventral midbrain from the region of needle track, an occurrence that was partially reversed by ADX. In conclusion, bilateral ADX counteracted the increased astroglial FGF-2 synthesis in the dopamine regions of the ventral midbrain following a 6-OHDA-induced local lesion and interfered with FGF receptor regulation around injury. These findings give further evidence that adrenocortical hormones may regulate the astroglial FGF-2-mediated trophic mechanisms and wound repair events in the lesioned central nervous system. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Soil structure is generally defined as the arrangement, orientation, and organization of the primary particles of sand, silt, and clay into compound aggregates, which exhibit properties that are unequal to the properties of a mass of nonaggregated material with a similar texture.6 Therefore the nature of soil structure is that it conveys specific properties to the soil and any alteration, i.e., breakdown or structural development, to the soil structural units will affect the physical properties of the soil. The aggregation and organization of the soil particles tend to form a hierarchical order4, 5 where the lower orders tend to have higher densities and greater internal strength than the higher orders. A schematic diagram of the hierarchical nature of soil structural elements in a clay soil is given in Fig. 1.4 Clay particles tend to form domains (packets of parallel clay sheets, generally consisting of 5-7 sheets), in turn several domains form clusters, followed by several orders of clusters, micro- and macroaggregates. The hierarchical nature implies that the destruction of a lower order will result in the destruction of all higher hierarchical orders. An example is the dispersion of sodic clay domains which results in the destruction of all higher orders, resulting in a dense soil with low hydraulic conductivity. Hence the clay domains are the fundamental building blocks of the soil and its integrity may determine the soil's physical properties and behavior.
Resumo:
One hundred forty-two women with polycystic ovary syndrome (PCOS) with an average body mass index (BMI) of 29.1 kg/m(2) and average age of 25.12 years were studied. By BMI, 30.2% were normal, 38.0% were overweight and 31.6% were obese. Thirty-one eumenorrheic women matched for BMI and age, with no evidence of hyperandrogenism, were recruited as controls. The incidence of dyslipidemia in the PCOS group was twice that of the Control group (76.1% versus 32.25%). The most frequent abnormalities were low high-density lipoprotein cholesterol (HDL-C; 57.6%) and high triglyceride (TG) (28.3%). HDL-C was significantly lower in all subgroups of women with PCOS when compared to the subgroups of normal women. No significant differences were seen in the total cholesterol (p = 0.307), low-density lipoprotein cholesterol (LDL-C; p = 0.283) and TGs (p = 0.113) levels among the subgroups. An independent effect on HDL-C was detected for glucose (p = 0.004) and fasting insulin (p = 0.01); on TG for age (p = 0.003) and homeostatic model assessment insulin resistance (p = 0.03) and on total cholesterol and LDL-C for age (p = 0.02 and p = 0.033, respectively). In conclusion, dyslipidemia is common in women with PCOS, mainly due to low HDL-C levels. BMI has a significant impact on this abnormality.
Resumo:
A biofilm is a complex community of surface-associated cells enclosed in a polymer matrix. They attach to solid surfaces and their formation can be affected by growth conditions and co-infection with other pathogens. The presence of biofilm may protect the microorganisms from host defenses, as well as significantly reduce their susceptibility to antifungal agents. Pathogenic microbes can form biofilms on the inert surfaces of implanted devices such as catheters, prosthetic cardiac valves and intrauterine devices (IUDs). The present study was carried out to analyze the presence of biofilm on the surface of intrauterine devices in patients with recurrent vulvovaginal candidiasis, and to determine the susceptibility profile of the isolated yeasts to amphotericin B and fluconazole. Candida albicans was recovered from the IUDs and it was found to be susceptible to the antifungal agents when tested under planktonic growing conditions. These findings indicate the presence of the biofilm on the surface of the IUD as an important risk factor for recurrent vulvovaginal candidiasis.
Resumo:
PEComas are rare neoplasms that are sometimes associated with the tuberous sclerosis complex. They typically contain perivascular epithelioid cells that coexpress muscle and melanocytic markers. However, apart from these classical features, considerable clinical, pathologic, and immunohistochemical variation has been reported. WT1, the Wilms tumor gene product, can be expressed in various tumors from different anatomical sites, including sex-cord and other ovarian tumors with a sertoliform pattern. Neither a sex-cord like pattern nor WT1 expression has been described in PEComas. Here, we describe a case of uterine PEComa with a pattern of infiltration into the myometrium that is similar to stromal sarcomas, characterized by tongues and endovascular growing. The architecture and cellular morphology were similar to sex-cord tumors, and the PEComa was diffusely and strongly positive for WT1. We reviewed, from our files, an additional 9 cases of PEComa from different sites, and found WT1 expression in one more soft tissue tumor. We discuss the relationship between PEComas and other uterine sarcomas. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Deletion of the long arm of chromosome 18 is one of the most common segmental aneusomies compatible with life and usually involves a deletion of the terminal chromosomal region. However, the mechanisms implicated in the stabilization of terminal deletions are not well understood. In this study, we analyzed a girl with moderate mental retardation who had a cytogenetically visible terminal 18q deletion. In order to characterize the breakpoint in the terminal 18q region, we used fluorescence In situ hybridization (FISH) with bacterial artificial chromosomes (BACs) and pan-telomeric probes and also the array technique based on comparative genomic hybridization (array-CGH). FISH with pan-telomeric probes revealed no signal in the terminal region of the deleted chromosome, indicating the absence of normal telomere repeat (TTAGGG)n sequences in 18q. We suggest that neo-telomere formation by chromosome healing was involved in the repair and stabilization of this terminal deletion. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
Mutations in PKD1 cause the majority of cases of autosomal dominant polycystic kidney disease (ADPKD). Because polycystin 1 modulates cell proliferation, cell differentiation, and apoptosis, its lower biologic activity observed in ADPKD might influence the degree of injury after renal ischemia/reperfusion. We induced renal ischemia/reperfusion in 10- to 12-wk-old male noncystic Pkd1(+/-) and wild-type mice. Compared with wild-type mice, heterozygous mice had higher fractional excretions of sodium and potassium and higher serum creatinine after 48 h. In addition, in heterozygous mice, also cortical damage, rates of apoptosis, and inflammatory infiltration into the interstitium at time points out to 14 d after injury all increased, as well as cell proliferation at 48 h and 7 d. The mRNA and protein expression of p21 was lower in heterozygous mice than wild-type mice at 48 h. After 6 wk, we observed dilated tubules, microcysts, and increased renal fibrosis in heterozygotes. The early mortality of heterozygotes was significantly higher than that of wild-type mice when we extended the duration of ischemia from 32 to 35 min. In conclusion, ischemia/reperfusion induces a more severe injury in kidneys of Pkd1-haploin-sufficient mice, a process that apparently depends on a relative deficiency of p2l activity, tubular dilation, and microcyst formation. These data suggest the possibility that humans with ADPKD from PKD1 mutations may be at greater risk for damage from renal ischemia/reperfusion injury.