922 resultados para PARASITE PLASMODIUM-FALCIPARUM
Resumo:
Parasite proteases play key roles in several fundamental steps of the Plasmodium life cycle, including haemoglobin degradation, host cell invasion and parasite egress. Plasmodium exit from infected host cells appears to be mediated by a class of papain-like cysteine proteases called 'serine repeat antigens' (SERAs). A SERA subfamily, represented by Plasmodium falciparum SERA5, contains an atypical active site serine residue instead of a catalytic cysteine. Members of this SERAser subfamily are abundantly expressed in asexual blood stages, rendering them attractive drug and vaccine targets. In this study, we show by antibody localization and in vivo fluorescent tagging with the red fluorescent protein mCherry that the two P. berghei serine-type family members, PbSERA1 and PbSERA2, display differential expression towards the final stages of merozoite formation. Via targeted gene replacement, we generated single and double gene knockouts of the P. berghei SERAser genes. These loss-of-function lines progressed normally through the parasite life cycle, suggesting a specialized, non-vital role for serine-type SERAs in vivo. Parasites lacking PbSERAser showed increased expression of the cysteine-type PbSERA3. Compensatory mechanisms between distinct SERA subfamilies may thus explain the absence of phenotypical defect in SERAser disruptants, and challenge the suitability to develop potent antimalarial drugs based on specific inhibitors of Plasmodium serine-type SERAs.
Resumo:
Antibodies have the potential to be therapeutic reagents for malaria. Here we describe the production of a novel phage antibody display library against the C-terminal 19 kDa region of the Plasmodium yoelii YM merozoite surface protein-1 (MSP1(19)). In vivo studies against homologous lethal malaria challenge show an anti-parasite effect in a dose dependent manner, and analysis by plasmon resonance indicates binding to the antigen is comparable to the binding of a protective monoclonal antibody. The data support the lack of a need for any antibody Fc-related function and hold great significance for the development of a therapeutic reagent for malaria. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The transmission of malaria in Brazil is heterogeneous throughout endemic areas and the presence of asymptomatic Plasmodium sp. carriers (APCs) in the Brazilian Amazon has already been demonstrated. Malaria screening in blood banks is based on the selection of donors in respect to possible risks associated with travel or residence, clinical evidence and/or inaccurate diagnostic methods thereby increasing the probability of transfusion-transmitted infection. We evaluated the frequency of APCs in four blood services in distinct areas of the Brazilian Amazon region. DNA was obtained from 400 human blood samples for testing using the phenol-chloroform method followed by a nested-PCR protocol with species-specific primers. The positivity rate varied from 1 to 3% of blood donors from the four areas with an average of 2.3%. All positive individuals had mixed infections for Plasmodium vivax and Plasmodium falciparum. No significant differences in the results were detected among these areas; the majority of cases originated from the transfusion centres of Porto Velho, Rondônia State and Macapá, Amapá State. Although it is still unclear whether APC individuals may act as reservoirs of the parasite, efficient screening of APCs and malaria patients in Brazilian blood services from endemic areas needs to be improved.
Resumo:
Malaria treatment of children is particulary difficult because of the absence of palatable suspensions for young children. Halofantrine hydrochloride is available as a suspension which is both palatable and simple to administer, and has been studied in a number of trials in the past 5 years. Children (331) ranging from 4 months to 17 years of age (mean 4.7 years) were treated with the 5% suspension using various dose regimens and 364 children ranging from 4 months to 14 years of age (mean 5.7 years) were treated with the 2% suspension 6 hourly for 3 doses. Using the 3-dose regimen there were only 2/462 (0.4%) who failed to clear the initial parasitaemia. Recrudescence occurred in 28/367 (7.6%) children with evaluable follow up data. The mean parasite clearance time in this group was 57.1h (n = 417) and the mean fever clearance time was 50.9 h (n = 325). Symptoms related to malaria cleared rapidly following treatment generally by 24-48 h post treatment. Side effects possibly related to treatment were uncommon but were similar to those reported in adults. The frequency of diarrhoea and abdominal pain was lower than that seen in adults and was also less frequent following multiple doses and the use of the more dilute suspension. Since was evidence that the majority of recrudescences were seen in younger children or those living in areas with low or seasonal transmission it is recommended that a further course of treatment 7 days later is given to these patients to prevent recrudescence. Halofantrine suspension appears to be effective and well tolerated in children and is a useful addition to the drugs available for the treatment of paediatric malaria.
Resumo:
Plasmodium falciparum is the parasite responsible for the most acute form of malaria in humans. Recently, the serine repeat antigen (SERA) in P. falciparum has attracted attention as a potential vaccine and drug target, and it has been shown to be a member of a large gene family. To clarify the relationships among the numerous P. falciparum SERAs and to identify orthologs to SERA5 and SERA6 in Plasmodium species affecting rodents, gene trees were inferred from nucleotide and amino acid sequence data for 33 putative SERA homologs in seven different species. (A distance method for nucleotide sequences that is specifically designed to accommodate differing GC content yielded results that were largely compatible with the amino acid tree. Standard-distance and maximum-likelihood methods for nucleotide sequences, on the other hand, yielded gene trees that differed in important respects.) To infer the pattern of duplication, speciation, and gene loss events in the SERA gene family history, the resulting gene trees were then "reconciled" with two competing Plasmodium species tree topologies that have been identified by previous phylogenetic studies. Parsimony of reconciliation was used as a criterion for selecting a gene tree/species tree pair and provided (1) support for one of the two species trees and for the core topology of the amino acid-derived gene tree, (2) a basis for critiquing fine detail in a poorly resolved region of the gene tree, (3) a set of predicted "missing genes" in some species, (4) clarification of the relationship among the P. falciparum SERA, and (5) some information about SERA5 and SERA6 orthologs in the rodent malaria parasites. Parsimony of reconciliation and a second criterion--implied mutational pattern at two key active sites in the SERA proteins-were also seen to be useful supplements to standard "bootstrap" analysis for inferred topologies.
Resumo:
The thrombospondin related adhesion protein (TRAP) is a malaria pre-erythrocytic antigen currently pursued as malaria vaccine candidate to Plasmodium falciparum. In this study, a long synthetic peptide (LSP) representing a P. vivax TRAP fragment involved in hepatocyte invasion was formulated in both Freund and Montanide ISA 720 adjutants and administered by IM and subcutaneous routes to BALB/c mice and Aotus monkeys. We measured specific humoral immune responses in both animal species and performed a sporozoite challenge in Aotus monkeys to assess the protective efficacy of the vaccine. After immunization both mice and Aotus seroconverted as shown by ELISA, and the specific anti-peptide antibodies cross reacted with the parasite in IFAT assays. Only two out of six immunized animals became infected after P. vivax sporozoite challenge as compared with four out of six animals from the control group. These results suggest that this TRAP fragment has protective potential against P. vivax malaria and deserves further studies as vaccine candidate.
Resumo:
Plasmodium vivax control is now being hampered by drug resistance. Orthologous Plasmodium falciparum genes linked to chloroquine or sulfadoxine-pyrimethamine chemoresistance have been identified in P. vivax parasites, but few studies have been performed. The goal of the present work is to characterise pvmdr1 and pvdhfr genes in parasite isolates from a Brazilian endemic area where no molecular investigation had been previously conducted. The pvmdr1 analysis revealed the existence of single (85.7%) and double (14.3%) mutant haplotypes, while the pvdhfr examination showed the presence of double (57.2%) and triple (42.8%) mutant haplotypes. The implications of these findings are discussed.
Resumo:
Malaria is the most important public health problem in several countries. In Thailand, co-infections of Plasmodium vivax and Plasmodium falciparum are common. We examined the prevalence and patterns of mutations in P. vivax dihydrofolate reductase (Pvdhfr) and P. vivax dihydropteroate synthase (Pvdhps) in 103 blood samples collected from patients with P. vivax infection who had attended the malaria clinic in Mae Sot, Tak Province during 2009 and 2010. Using nested polymerase chain reaction-restriction fragment length polymorfism, we examined single nucleotide polymorphisms-haplotypes at amino acid positions 13, 33, 57, 58, 61, 117 and 173 of Pvdhfr and 383 and 553 of Pvdhps. All parasite isolates carried mutant Pvdhfr alleles, of which the most common alleles were triple mutants (99%). Eight different types of Pvdhfr and combination alleles were found, as follows: 57I/58R/117T, 57I/58R/117T, 57I/58R/117T/N, 57L/58R/117T, 57L/58R/117T, 58R/61M/117N, 58R/61M/117N and 13L/57L/58R/117T. The most common Pvdhfr alleles were 57I/58R/117T (77.7%), 57I/58R/117T/N (1%), 57L/58R/117T (5.8%) and 58R/61M/117N (14.5%). The most common Pvdhfr alleles were 57I/58R/117T (77.7%), 57I/58R/117T/N (1%), 57L/58R/117T (5.8%) and 58R/61M/117N (14.5%). Additionally, we recovered one isolate of a carrying a quadruple mutant allele, 13L/57L/58R/117T. The most prevalent Pvdhps allele was a single mutation in amino acid 383 (82.5%), followed by the wild-type A383/A553 (17.5%) allele. Results suggest that all P. vivax isolates in Thailand carry some combination of mutations in Pvdhfr and Pvdhps. Our findings demonstrate that development of new antifolate drugs effective against sulfadoxine-pyrimethamine-resistant P. vivax is required.
Resumo:
Plasmodium vivax is the most prevalent malaria parasite on the American continent. It generates a global burden of 80-100 million cases annually and represents a tremendous public health problem, particularly in the American and Asian continents. A malaria vaccine would be considered the most cost-effective measure against this vector-borne disease and it would contribute to a reduction in malaria cases and to eventual eradication. Although significant progress has been achieved in the search for Plasmodium falciparum antigens that could be used in a vaccine, limited progress has been made in the search for P. vivax components that might be eligible for vaccine development. This is primarily due to the lack of in vitro cultures to serve as an antigen source and to inadequate funding. While the most advanced P. falciparum vaccine candidate is currently being tested in Phase III trials in Africa, the most advanced P. vivax candidates have only advanced to Phase I trials. Herein, we describe the overall strategy and progress in P. vivax vaccine research, from antigen discovery to preclinical and clinical development and we discuss the regional potential of Latin America to develop a comprehensive platform for vaccine development.
Resumo:
Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission.
Resumo:
We describe a simple method for detection of Plasmodium vivaxand Plasmodium falciparum infection in anophelines using a triplex TaqMan real-time polymerase chain reaction (PCR) assay (18S rRNA). We tested the assay on Anopheles darlingi and Anopheles stephensi colony mosquitoes fed withPlasmodium-infected blood meals and in duplicate on field collected An. darlingi. We compared the real-time PCR results of colony-infected and field collected An. darlingi, separately, to a conventional PCR method. We determined that a cytochromeb-PCR method was only 3.33% as sensitive and 93.38% as specific as our real-time PCR assay with field-collected samples. We demonstrate that this assay is sensitive, specific and reproducible.
Resumo:
The efficacy and safety of artemether-lumefantrine for the treatment of malaria in nonimmune populations are not well defined. In this study, 165 nonimmune patients from Europe and non-malarious areas of Colombia with acute, uncomplicated falciparum malaria or mixed infection including P. falciparum were treated with the six-dose regimen of artemether-lumefantrine. The parasitologic cure rate at 28 days was 96.0% for the per protocol population (119/124 patients). Median times to parasite clearance and fever clearance were 41.5 and 36.8 hours, respectively. No patient had gametocytes after Day 7. Treatment was well tolerated; most adverse events were mild to moderate and seemed to be related to malaria. There were few serious adverse events, none of which were considered to be drug-related. No significant effects on ECG or laboratory parameters were observed. In conclusion, the six-dose regimen of artemether-lumefantrine was effective and well tolerated in the treatment of acute uncomplicated falciparum malaria in nonimmune patients.
Resumo:
Objective: The candidate malaria vaccine RTS,S/AS02A is a recombinant protein containing part of the circumsporozoite protein (CSP) sequence of Plasmodium falciparum, linked to the hepatitis B surface antigen and formulated in the proprietary adjuvant system AS02A. In a recent trial conducted in children younger than age five in southern Mozambique, the vaccinedemonstrated significant and sustained efficacy against both infection and clinical disease. In a follow-up study to the main trial, breakthrough infections identified in the trial were examined to determine whether the distribution of csp sequences was affected by the vaccine and to measure the multiplicity of infecting parasite genotypes. Design: P. falciparum DNA from isolates collected during the trial was used for genotype studies. Setting: The main trial was carried out in the Manhiça district, Maputo province, Mozambique, between April 2003 and May 2004. Participants: Children from the two cohorts of the main trial provided parasite isolates as follows: children from Cohort 1 who were admitted to hospital with clinical malaria; children from Cohort 1 who were parasite-positive in a cross-sectional survey at study month 8.5; children from Cohort 2 identified as parasite-positive during follow-up by active detection of infection. Outcome: Divergence of DNA sequence encoding the CSP T cell-epitope region sequence from that of the vaccine sequence was measured in 521 isolates. The number of distinct P. falciparum genotypes was also determined. Results: We found no evidence that parasite genotypes from children in the RTS,S/AS02A arm were more divergent than those receiving control vaccines. For Cohort 1 (survey at studymonth 8.5) and Cohort 2, infections in the vaccine group contained significantly fewer genotypes than those in the control group, (p 1/4 0.035, p 1/4 0.006), respectively, for the two cohorts. This was not the case for children in Cohort 1 who were admitted to hospital (p 1/4 0.478). Conclusions: RTS,S/AS02A did not select for genotypes encoding divergent T cell epitopes in the C-terminal region of CSP in this trial. In both cohorts, there was a modest reduction in the mean number of parasite genotypes harboured by vaccinated children compared with controls, but only among those with asymptomatic infections.
Resumo:
BACKGROUND: Little information is available on resistance to anti-malarial drugs in the Solomon Islands (SI). The analysis of single nucleotide polymorphisms (SNPs) in drug resistance associated parasite genes is a potential alternative to classical time- and resource-consuming in vivo studies to monitor drug resistance. Mutations in pfmdr1 and pfcrt were shown to indicate chloroquine (CQ) resistance, mutations in pfdhfr and pfdhps indicate sulphadoxine-pyrimethamine (SP) resistance, and mutations in pfATPase6 indicate resistance to artemisinin derivatives. METHODS: The relationship between the rate of treatment failure among 25 symptomatic Plasmodium falciparum-infected patients presenting at the clinic and the pattern of resistance-associated SNPs in P. falciparum infecting 76 asymptomatic individuals from the surrounding population was investigated. The study was conducted in the SI in 2004. Patients presenting at a local clinic with microscopically confirmed P. falciparum malaria were recruited and treated with CQ+SP. Rates of treatment failure were estimated during a 28-day follow-up period. In parallel, a DNA microarray technology was used to analyse mutations associated with CQ, SP, and artemisinin derivative resistance among samples from the asymptomatic community. Mutation and haplotype frequencies were determined, as well as the multiplicity of infection. RESULTS: The in vivo study showed an efficacy of 88% for CQ+SP to treat P. falciparum infections. DNA microarray analyses indicated a low diversity in the parasite population with one major haplotype present in 98.7% of the cases. It was composed of fixed mutations at position 86 in pfmdr1, positions 72, 75, 76, 220, 326 and 356 in pfcrt, and positions 59 and 108 in pfdhfr. No mutation was observed in pfdhps or in pfATPase6. The mean multiplicity of infection was 1.39. CONCLUSION: This work provides the first insight into drug resistance markers of P. falciparum in the SI. The obtained results indicated the presence of a very homogenous P. falciparum population circulating in the community. Although CQ+SP could still clear most infections, seven fixed mutations associated with CQ resistance and two fixed mutations related to SP resistance were observed. Whether the absence of mutations in pfATPase6 indicates the efficacy of artemisinin derivatives remains to be proven.
Resumo:
BACKGROUND: Artemisinin-resistant Plasmodium falciparum has emerged in the Greater Mekong sub-region and poses a major global public health threat. Slow parasite clearance is a key clinical manifestation of reduced susceptibility to artemisinin. This study was designed to establish the baseline values for clearance in patients from Sub-Saharan African countries with uncomplicated malaria treated with artemisinin-based combination therapies (ACTs). METHODS: A literature review in PubMed was conducted in March 2013 to identify all prospective clinical trials (uncontrolled trials, controlled trials and randomized controlled trials), including ACTs conducted in Sub-Saharan Africa, between 1960 and 2012. Individual patient data from these studies were shared with the WorldWide Antimalarial Resistance Network (WWARN) and pooled using an a priori statistical analytical plan. Factors affecting early parasitological response were investigated using logistic regression with study sites fitted as a random effect. The risk of bias in included studies was evaluated based on study design, methodology and missing data. RESULTS: In total, 29,493 patients from 84 clinical trials were included in the analysis, treated with artemether-lumefantrine (n = 13,664), artesunate-amodiaquine (n = 11,337) and dihydroartemisinin-piperaquine (n = 4,492). The overall parasite clearance rate was rapid. The parasite positivity rate (PPR) decreased from 59.7 % (95 % CI: 54.5-64.9) on day 1 to 6.7 % (95 % CI: 4.8-8.7) on day 2 and 0.9 % (95 % CI: 0.5-1.2) on day 3. The 95th percentile of observed day 3 PPR was 5.3 %. Independent risk factors predictive of day 3 positivity were: high baseline parasitaemia (adjusted odds ratio (AOR) = 1.16 (95 % CI: 1.08-1.25); per 2-fold increase in parasite density, P <0.001); fever (>37.5 °C) (AOR = 1.50 (95 % CI: 1.06-2.13), P = 0.022); severe anaemia (AOR = 2.04 (95 % CI: 1.21-3.44), P = 0.008); areas of low/moderate transmission setting (AOR = 2.71 (95 % CI: 1.38-5.36), P = 0.004); and treatment with the loose formulation of artesunate-amodiaquine (AOR = 2.27 (95 % CI: 1.14-4.51), P = 0.020, compared to dihydroartemisinin-piperaquine). CONCLUSIONS: The three ACTs assessed in this analysis continue to achieve rapid early parasitological clearance across the sites assessed in Sub-Saharan Africa. A threshold of 5 % day 3 parasite positivity from a minimum sample size of 50 patients provides a more sensitive benchmark in Sub-Saharan Africa compared to the current recommended threshold of 10 % to trigger further investigation of artemisinin susceptibility.