968 resultados para Oxide films
Resumo:
It has been experimentally found that molybdenum oxide (MoO3) as the interfacial modification layer on indium-tin-oxide (ITO) in organic light-emitting diodes (OLEDs) significantly improves the efficiency and lifetime. In this paper, the role of MoO3 and MoO3 doped N,N '-di(naphthalene-1-yl)-N,N '-diphenyl-benzidine (NPB) as the interface modification layer on ITO in improvement of the efficiency and stability of OLEDs is investigated in detail by atomic force microscopy (AFM), polarized optical microscopy, transmission spectra, ultraviolet photoemission spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS).
Resumo:
We report a facile method to create the chemically converted graphene oxide/epoxy resin nanocomposites from graphene oxide sheets through two-phase extraction. Great improvements in mechanical properties such as compressive failure strength and toughness have been achieved for the chemically converted graphene oxide/epoxy resin for a 0.0375 wt% loading of chemically converted graphene oxide sheets in epoxy resin by 48.3% and 1185.2%, respectively. In addition, the loading of graphene is also conveniently tunable even to 0.15 wt% just by increasing the volume of the graphene oxide dispersion.
Resumo:
In polystyrene-block-poly(ethylene oxide) thin square platelets can be obtained via fast solvent evaporation by controlling the tethering density (0.08 < sigma < 0.11). The tethering density of the brushes is proportional to the thickness of the PEO crystal and increases with increasing initial solution heating temperature (T-i). When T-i < T-m, where T-m is the melting point of PEO, brushes with microphase-separated structures are observed. The formation of microphase-separated brushes depends on two factors: the strong incompatibility between PS and noncrystalline PEO chains (attached to the crystalline PEO) and the weak interaction between PS-PS brushes.
Resumo:
This feature article highlights work from the authors' laboratories on the various kinds of oxide optical materials, mainly luminescence and pigment materials with different forms (powder, core-shell structures, thin film and patterning) prepared by the Pechini-type sol-gel (PSG) process. The PSG process, which uses the common metal salts (nitrates, acetates, chlorides, etc.) as precursors and citric acid (CA) as chelating ligands of metal ions and polyhydroxy alcohol (such as ethylene glycol or poly ethylene glycol) as a cross-linking agent to form a polymeric resin on molecular level, reduces segregation of particular metal ions and ensures compositional homogeneity. This process can overcome most of the difficulties and disadvantages that frequently occur in the alkoxides based sol-gel process.
Resumo:
A random lasing emission from 4-(dicy-anomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped polystyrene (PS) thin films was realized by the scattering role of ZnO nanorods. The device was fabricated by spin-coating DCJTB doped PS on ZnO nanorods. The ZnO nanorods were grown on indium-tin-oxide (ITO) glass substrate by hydrothermal synthesis method. It can be seen that the device emits a resonance multimode peak at center wavelength of 630 nm with a mode line-width of less than 0.23 nm and exhibits threshold excitation intensity as low as 0.375 mJ pulse(-1) cm(-2). The agreement of the dependence of threshold pumped intensity on the excitation area with the random laser theory indicates that the lasing emission realized here is random laser. Our results demonstrate that the nanostructured ZnO nanorods are promising candidate as alternative sources of coherent light emission to realize organic lasers.
Resumo:
A Ru(bpy)(3)(2+)-doped silica nanoparticle-[Ru@Silica] modified indium tin oxide electrode was prepared by simple electrostatic self-assembly technique, and one-electron catalytic oxidation of guanine bases in double-strand and denatured DNA was realized using the electrochemiluminescence detection means.
Resumo:
An approach was reported to synthesize silica hybridized ruthenium bipyridyl complex through amidation reaction by covalent attachment of bis(bipyridyl)-4,4'-dicarboxy-2,2'-bipyridyl-ruthenium to (3-aminopropyl)-triethoxysilane. The hybrid complex then was gelatinized through acid catalytic hydrolysis method and a sol-gel modified indium, tin oxide electrode was prepared via spin coating technique. As prepared indium tin oxide electrode possesses good stability therein with excellent electrochemiluminescence behavior.
Resumo:
We initially report an electrochemical sensing platform based on molecularly imprinted polymers (MIPs) at functionalized Indium Tin Oxide Electrodes (ITO). In this research, aminopropyl-derivatized organosilane aminopropyltriethoxysilane (APTES), which plays the role of functional monomers for template recognition, was firstly self-assembled on an ITO electrode and then dopamine-imprinted sol was spin-coated on the modified surface. APTES which can interact with template dopamine (DA) through hydrogen bonds brought more binding sites located closely to the surface of the ITO electrode, thus made the prepared sensor more sensitive for DA detection. Potential scanning is presented to extract DA from the modified film, thus DA can rapidly and completely leach out. The affinity and selectivity of the resulting biomimetic sensor were characterized using cyclic voltammetry (CV). It exhibited an increased affinity for DA over that of structurally related molecules, the anodic current for DA oxidation depended on the concentration of DA in the linear range from 2 x 10(-6) M to 0.8 x 10(-3) M with a correlation coefficient of 0.9927.In contrast, DA-templated film prepared under identical conditions on a bare ITO showed obviously lower response toward dopamine in solution.
Resumo:
A series of Eu3+-doped ZnO films have been prepared by a sol-gel method. These films were characterized by X-ray diffraction (XRD) and photoluminecent spectra (PL). Effects of synthetic parameters, such as annealing atmosphere, temperature and concentration of doped ions, on the highly oriented crystal growth were studied in detail. The crystalline structures of films annealed in vacuum have a wurtzite symmetry with highly c-axis orientation. A characteristic D-5(0) -> F-7(J)(J = 1, 2, 3 and 4) red emission is observed due to energy transfer from the ZnO host to the doped Eu3+ in the c-oriented ZnO films.
Resumo:
We have systematically studied the thin film morphologies of asymmetric polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymer subjected to solvent vapors of varying selectivity for the constituent blocks. Upon a short treatment in neutral or PS-selective vapor, the film exhibited a highly ordered array of hexagonally packed, cylindrical microdomains. In the case of PEO selective vapor annealing, such ordered cylindrical microdomains were not obtained. instead, fractal patterns on the microscale were observed and their growth processes investigated. Furthermore, hierarchical structures could be obtained if the fractal pattern was exposed to neutral or PS selective vapor.
Resumo:
A series of cerium dioxide (CeO2,)/polyimide (PI) nanocomposites were successfully prepared from Ce(Phen)(3) and polyamic acid (PAA) via the solution direct-dispersing method, followed by a step thermal imidization process. TGA and XPS studies showed that the cerium complex decomposed to form CeO2, during the thermal imidization process at 300 degrees C. SEM observation showed that the formed CeO2, as nalloparticles was well dispersed in polyimide matrix with a size of about 50-100 nm for samples with different contents of CeO2. Thermal analysis indicated that the introduction of CeO2, decreased the thermal stability of nanocomposite films due to the decomposition of Ce(Phen)(3) in the imidization process, while the glass transition temperature (T-g) increased obviously. especially nanocomposite films with high loading of CeO2 exhibited a trend of disappearance off, DMTA and static tensile measurements showed that the storage modulus of nanocomposite films increased, while the elongation at break decreased with increasing CeO2 content.
Resumo:
A bilayer CdS/ITO film was obtained. The dipped CdS was grown by an ultrasonic colloid deposition (USCD) method. Microstructure of the CdS film made by USCD has a wider transmission range and a higher transmittance. Amorphous indium-tin-oxide (ITO) thin film was deposited using d.c. magnetron-sputtering at room temperature. The ITO films exhibited good conductivity and maximum transmittance of 94%. The CdS/ITO bilayer was investigated by means of GIXD (grazing incidence X-ray diffraction) at different incidence angles (alpha = 0.20-5.00degrees) and XRD. We discuss a model for the thin bilayer film. SEM and AFM show that homogeneous CdS films with a bar-shaped ultrafine particles and ITO film with nanometer structure. The mechanism of the bilayer CdS/ITO film is discussed.
Resumo:
Novel photochromic inorganic-organic multilayers composed of polyoxometalates and poly(ethylenimine) have been prepared by the layer-by-layer (LbL) self-assembly method. The growth process, composition, surface topography, and photochromic properties of the multilayer films were investigated by UV-visible and Fourier transform infrared spectroscopy, atomic force microscopy, electrospin resonance (ESR), and X-ray photoelectron spectroscopy (XPS). Irradiated with ultraviolet light, the transparent films changed from colorless to blue. Moreover, the blue films showed good reversibility of photochromism, and could recover the colorless state gradually in air, where oxygen plays an important role in the bleaching process. On account of the ESR and XPS results, parts of W6+ in multilayers were reduced to W5+, which exhibited a characteristic blue; a possible photochromic mechanism can be speculated. This work provides basic guideline for the assembly of multilayers with photochromic properties.
Resumo:
The surface morphology and crystallization behavior of a weakly segregated symmetric diblock copolymer, poly(styrene-b-6-caprolactone) (PS-b-PCL), in thin films were investigated by optical microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy (AFM). When the samples were annealed in the molten state, surface-induced ordering, that is, relief structures with uniform thickness or droplets in the adsorbed monolayer, were observed depending on the annealing temperature. The polar PCL block preferred to wet the surface of a silicon wafer, while the PS block wet the air interface. This asymmetric wetting behavior led to the adsorbed monolayer with a PCL block layer having a thickness of around 4.0 nm. The crystallization of PCL blocks could overwhelm the microphase-separated structure because of the weak segregation. In situ observation of crystal growth indicated that the nucleation process preferred to occur at the edge of the thick parts of the film, that is, the relief structures or droplets. The crystal growth rate was presented by the time dependence of the distance between the tip of crystal clusters and the edge. At 22 and 17 degreesC, the average crystal growth rates were 55 +/- 10 and 18 +/- 4 nm/min, respectively.
Resumo:
Ultrathin multilayer films have been prepared by means of alternate adsorption of iron(Ill)-substituted heteropolytungstate anions and a cationic redox polymer on the 4-aminobenzoic acid modified glassy carbon electrode surface based on electrostatic layer-by-layer assembly. Cyclic voltammetry, electrochemical impedance spectroscopy and UV-Vis absorption spectrometry have been used to easily monitor the uniformity of thus-formed multilayer films. Especially, the electrochemical impedance spectroscopy is successfully used to monitor the multilayer deposition processes and is a very useful technique in the characterization of multilayer films because it provides valuable information about the interfacial impedance features. All these results reveal regular film growth with each layer adsorption. The resulting multilayer films can effectively catalyze the reduction of H2O2,NO2- and BrO3-.