960 resultados para Optimization problems
Resumo:
An alternative relation to Pareto-dominance relation is proposed. The new relation is based on ranking a set of solutions according to each separate objective and an aggregation function to calculate a scalar fitness value for each solution. The relation is called as ranking-dominance and it tries to tackle the curse of dimensionality commonly observedin evolutionary multi-objective optimization. Ranking-dominance can beused to sort a set of solutions even for a large number of objectives when Pareto-dominance relation cannot distinguish solutions from one another anymore. This permits search to advance even with a large number of objectives. It is also shown that ranking-dominance does not violate Pareto-dominance. Results indicate that selection based on ranking-dominance is able to advance search towards the Pareto-front in some cases, where selection based on Pareto-dominance stagnates. However, in some cases it is also possible that search does not proceed into direction of Pareto-front because the ranking-dominance relation permits deterioration of individual objectives. Results also show that when the number of objectives increases, selection based on just Pareto-dominance without diversity maintenance is able to advance search better than with diversity maintenance. Therefore, diversity maintenance is connive at the curse of dimensionality.
Resumo:
The use of carbon paste electrodes (CPE) of mineral sulfides can be useful for electrochemical studies to overcome problems by using massive ones. Using CPE-chalcopyrite some variables were electrochemically evaluated. These variables were: (i) the atmosphere of preparation (air or argon) of CPE and elapsed time till its use; (ii) scan rate for voltammetric measurements and (iii) chalcopyrite concentration in the CPE. Based on cyclic voltammetry, open-circuit potential and electrochemical impedance results the recommendations are: oxygen-free atmosphere to prepare and kept the CPE until around two ours, scan rates from 10 to 40 mV s-1, and chalcopyrite concentrations > 20%.
Resumo:
An optimization tool has been developed to help companies to optimize their production cycles and thus improve their overall supply chain management processes. The application combines the functionality that traditional APS (Advanced Planning System) and ARP (Automatic Replenishment Program) systems provide into one optimization run. A qualitative study was organized to investigate opportunities to expand the product’s market base. Twelve personal interviews were conducted and the results were collected in industry specific production planning analyses. Five process industries were analyzed to identify the product’s suitability to each industry sector and the most important product development areas. Based on the research the paper and the plastic film industries remain the most potential industry sectors at this point. To be successful in other industry sectors some product enhancements would be required, including capabilities to optimize multiple sequential and parallel production cycles, handle sequencing of complex finishing operations and to include master planning capabilities to support overall supply chain optimization. In product sales and marketing processes the key to success is to find and reach the people who are involved directly with the problems that the optimization tool can help to solve.
Resumo:
The purpose of this thesis was to create design a guideline for an LCL-filter. This thesis reviews briefly the relevant harmonics standards, old filter designs and problems faced with the previous filters. This thesis proposes a modified design method based on the “Liserre’s method” presented in the literature. This modified method will take into account network parameters better. As input parameters, the method uses the nominal power, allowed ripple current in converter and network side and desired resonant frequency of the filter. Essential component selection issues for LCL-filter, such as heating, voltage strength, current rating etc. are also discussed. Furthermore, a simulation model used to verify the operation of the designed filter in nominal power use and in transient situations is included in this thesis.
Resumo:
The goal of the Master’s thesis is to develop and to analyze the optimization method for finding a geometry shape of classical horizontal wind turbine blades based on set of criteria. The thesis develops a technique that allows the designer to determine the weight of such factors as power coefficient, sound pressure level and the cost function in the overall process of blade shape optimization. The optimization technique applies the Desirability function. It was never used before in that kind of technical problems, and in this sense it can claim to originality of research. To do the analysis and the optimization processes more convenient the software application was developed.
Resumo:
This thesis studies the use of heuristic algorithms in a number of combinatorial problems that occur in various resource constrained environments. Such problems occur, for example, in manufacturing, where a restricted number of resources (tools, machines, feeder slots) are needed to perform some operations. Many of these problems turn out to be computationally intractable, and heuristic algorithms are used to provide efficient, yet sub-optimal solutions. The main goal of the present study is to build upon existing methods to create new heuristics that provide improved solutions for some of these problems. All of these problems occur in practice, and one of the motivations of our study was the request for improvements from industrial sources. We approach three different resource constrained problems. The first is the tool switching and loading problem, and occurs especially in the assembly of printed circuit boards. This problem has to be solved when an efficient, yet small primary storage is used to access resources (tools) from a less efficient (but unlimited) secondary storage area. We study various forms of the problem and provide improved heuristics for its solution. Second, the nozzle assignment problem is concerned with selecting a suitable set of vacuum nozzles for the arms of a robotic assembly machine. It turns out that this is a specialized formulation of the MINMAX resource allocation formulation of the apportionment problem and it can be solved efficiently and optimally. We construct an exact algorithm specialized for the nozzle selection and provide a proof of its optimality. Third, the problem of feeder assignment and component tape construction occurs when electronic components are inserted and certain component types cause tape movement delays that can significantly impact the efficiency of printed circuit board assembly. Here, careful selection of component slots in the feeder improves the tape movement speed. We provide a formal proof that this problem is of the same complexity as the turnpike problem (a well studied geometric optimization problem), and provide a heuristic algorithm for this problem.
Resumo:
This work contains a series of studies on the optimization of three real-world scheduling problems, school timetabling, sports scheduling and staff scheduling. These challenging problems are solved to customer satisfaction using the proposed PEAST algorithm. The customer satisfaction refers to the fact that implementations of the algorithm are in industry use. The PEAST algorithm is a product of long-term research and development. The first version of it was introduced in 1998. This thesis is a result of a five-year development of the algorithm. One of the most valuable characteristics of the algorithm has proven to be the ability to solve a wide range of scheduling problems. It is likely that it can be tuned to tackle also a range of other combinatorial problems. The algorithm uses features from numerous different metaheuristics which is the main reason for its success. In addition, the implementation of the algorithm is fast enough for real-world use.
Resumo:
Mathematical models often contain parameters that need to be calibrated from measured data. The emergence of efficient Markov Chain Monte Carlo (MCMC) methods has made the Bayesian approach a standard tool in quantifying the uncertainty in the parameters. With MCMC, the parameter estimation problem can be solved in a fully statistical manner, and the whole distribution of the parameters can be explored, instead of obtaining point estimates and using, e.g., Gaussian approximations. In this thesis, MCMC methods are applied to parameter estimation problems in chemical reaction engineering, population ecology, and climate modeling. Motivated by the climate model experiments, the methods are developed further to make them more suitable for problems where the model is computationally intensive. After the parameters are estimated, one can start to use the model for various tasks. Two such tasks are studied in this thesis: optimal design of experiments, where the task is to design the next measurements so that the parameter uncertainty is minimized, and model-based optimization, where a model-based quantity, such as the product yield in a chemical reaction model, is optimized. In this thesis, novel ways to perform these tasks are developed, based on the output of MCMC parameter estimation. A separate topic is dynamical state estimation, where the task is to estimate the dynamically changing model state, instead of static parameters. For example, in numerical weather prediction, an estimate of the state of the atmosphere must constantly be updated based on the recently obtained measurements. In this thesis, a novel hybrid state estimation method is developed, which combines elements from deterministic and random sampling methods.
Resumo:
Optimointi on tavallinen toimenpide esimerkiksi prosessin muuttamisen tai uusimisen jälkeen. Optimoinnilla pyritään etsimään vaikkapa tiettyjen laatuominaisuuksien kannalta paras tapa ajaa prosessia tai erinäisiä prosessin osia. Tämän työn tarkoituksena oli investoinnin jälkeen optimoida neljä muuttujaa, erään runkoon menevän massan jauhatus ja määrä, märkäpuristus sekä spray –tärkin määrä, kolmen laatuominaisuuden, palstautumislujuuden, geometrisen taivutusjäykkyyden ja sileyden, suhteen. Työtä varten tehtiin viisi tehdasmittakaavaista koeajoa. Ensimmäisessä koeajossa oli tarkoitus lisätä vettä tai spray –tärkkiä kolmikerroskartongin toiseen kerrosten rajapintaan, toisessa koeajossa muutettiin, jo aiemmin mainitun runkoon menevän massan jauhatusta ja jauhinkombinaatioita. Ensimmäisessä koeajossa tutkittiin palstautumislujuuden, toisessa koeajossa muiden lujuusominaisuuksien kehittymistä. Kolmannessa koeajossa tutkittiin erään runkoon menevän massan jauhatuksen ja määrän sekä kenkäpuristimen viivapaineen muutoksen vaikutusta palstautumislujuuteen, geometriseen taivutusjäykkyyteen sekä sileyteen. Neljännessä koeajossa yritettiin toistaa edellisen koeajon paras piste ja parametreja hieman muuttamalla saada aikaan vieläkin paremmat laatuominaisuudet. Myös tässä kokeessa tutkittiin muuttujien vaikutusta palstautumislujuuteen, geometriseen taivutusjäykkyyteen ja sileyteen. Viimeisen kokeen tarkoituksena oli tutkia samaisen runkoon menevän massan vähentämisen vaikutusta palstautumislujuuteen. Erinäisistä vastoinkäymisistä johtuen, koeajoista saadut tulokset jäivät melko laihoiksi. Kokeista kävi kuitenkin ilmi, että lujuusominaisuudet eivät parantuneet, vaikka jauhatusta jatkettiin. Lujuusominaisuuksien kehittymisen kannalta turha jauhatus pystyttiin siis jättämään pois ja näin säästämään energiaa sekä säästymään pitkälle viedyn jauhatuksen mahdollisesti aiheuttamilta muilta ongelmilta. Vähemmällä jauhatuksella ominaissärmäkuorma saatiin myös pidettyä alle tehtaalla halutun tason. Puuttuvat lujuusominaisuudet täytyy saavuttaa muilla keinoin.
Resumo:
The last decade has shown that the global paper industry needs new processes and products in order to reassert its position in the industry. As the paper markets in Western Europe and North America have stabilized, the competition has tightened. Along with the development of more cost-effective processes and products, new process design methods are also required to break the old molds and create new ideas. This thesis discusses the development of a process design methodology based on simulation and optimization methods. A bi-level optimization problem and a solution procedure for it are formulated and illustrated. Computational models and simulation are used to illustrate the phenomena inside a real process and mathematical optimization is exploited to find out the best process structures and control principles for the process. Dynamic process models are used inside the bi-level optimization problem, which is assumed to be dynamic and multiobjective due to the nature of papermaking processes. The numerical experiments show that the bi-level optimization approach is useful for different kinds of problems related to process design and optimization. Here, the design methodology is applied to a constrained process area of a papermaking line. However, the same methodology is applicable to all types of industrial processes, e.g., the design of biorefiners, because the methodology is totally generalized and can be easily modified.
Resumo:
This paper presents the development of a two-dimensional interactive software environment for structural analysis and optimization based on object-oriented programming using the C++ language. The main feature of the software is the effective integration of several computational tools into graphical user interfaces implemented in the Windows-98 and Windows-NT operating systems. The interfaces simplify data specification in the simulation and optimization of two-dimensional linear elastic problems. NURBS have been used in the software modules to represent geometric and graphical data. Extensions to the analysis of three-dimensional problems have been implemented and are also discussed in this paper.
Resumo:
The Arctic region becoming very active area of the industrial developments since it may contain approximately 15-25% of the hydrocarbon and other valuable natural resources which are in great demand nowadays. Harsh operation conditions make the Arctic region difficult to access due to low temperatures which can drop below -50 °C in winter and various additional loads. As a result, newer and modified metallic materials are implemented which can cause certain problems in welding them properly. Steel is still the most widely used material in the Arctic regions due to high mechanical properties, cheapness and manufacturability. Moreover, with recent steel manufacturing development it is possible to make up to 1100 MPa yield strength microalloyed high strength steel which can be operated at temperatures -60 °C possessing reasonable weldability, ductility and suitable impact toughness which is the most crucial property for the Arctic usability. For many years, the arc welding was the most dominant joining method of the metallic materials. Recently, other joining methods are successfully implemented into welding manufacturing due to growing industrial demands and one of them is the laser-arc hybrid welding. The laser-arc hybrid welding successfully combines the advantages and eliminates the disadvantages of the both joining methods therefore produce less distortions, reduce the need of edge preparation, generates narrower heat-affected zone, and increase welding speed or productivity significantly. Moreover, due to easy implementation of the filler wire, accordingly the mechanical properties of the joints can be manipulated in order to produce suitable quality. Moreover, with laser-arc hybrid welding it is possible to achieve matching weld metal compared to the base material even with the low alloying welding wires without excessive softening of the HAZ in the high strength steels. As a result, the laser-arc welding methods can be the most desired and dominating welding technology nowadays, and which is already operating in automotive and shipbuilding industries with a great success. However, in the future it can be extended to offshore, pipe-laying, and heavy equipment industries for arctic environment. CO2 and Nd:YAG laser sources in combination with gas metal arc source have been used widely in the past two decades. Recently, the fiber laser sources offered high power outputs with excellent beam quality, very high electrical efficiency, low maintenance expenses, and higher mobility due to fiber optics. As a result, fiber laser-arc hybrid process offers even more extended advantages and applications. However, the information about fiber or disk laser-arc hybrid welding is very limited. The objectives of the Master’s thesis are concentrated on the study of fiber laser-MAG hybrid welding parameters in order to understand resulting mechanical properties and quality of the welds. In this work only ferrous materials are reviewed. The qualitative methodological approach has been used to achieve the objectives. This study demonstrates that laser-arc hybrid welding is suitable for welding of many types, thicknesses and strength of steels with acceptable mechanical properties along very high productivity. New developments of the fiber laser-arc hybrid process offers extended capabilities over CO2 laser combined with the arc. This work can be used as guideline in hybrid welding technology with comprehensive study the effect of welding parameter on joint quality.
Resumo:
Identification of low-dimensional structures and main sources of variation from multivariate data are fundamental tasks in data analysis. Many methods aimed at these tasks involve solution of an optimization problem. Thus, the objective of this thesis is to develop computationally efficient and theoretically justified methods for solving such problems. Most of the thesis is based on a statistical model, where ridges of the density estimated from the data are considered as relevant features. Finding ridges, that are generalized maxima, necessitates development of advanced optimization methods. An efficient and convergent trust region Newton method for projecting a point onto a ridge of the underlying density is developed for this purpose. The method is utilized in a differential equation-based approach for tracing ridges and computing projection coordinates along them. The density estimation is done nonparametrically by using Gaussian kernels. This allows application of ridge-based methods with only mild assumptions on the underlying structure of the data. The statistical model and the ridge finding methods are adapted to two different applications. The first one is extraction of curvilinear structures from noisy data mixed with background clutter. The second one is a novel nonlinear generalization of principal component analysis (PCA) and its extension to time series data. The methods have a wide range of potential applications, where most of the earlier approaches are inadequate. Examples include identification of faults from seismic data and identification of filaments from cosmological data. Applicability of the nonlinear PCA to climate analysis and reconstruction of periodic patterns from noisy time series data are also demonstrated. Other contributions of the thesis include development of an efficient semidefinite optimization method for embedding graphs into the Euclidean space. The method produces structure-preserving embeddings that maximize interpoint distances. It is primarily developed for dimensionality reduction, but has also potential applications in graph theory and various areas of physics, chemistry and engineering. Asymptotic behaviour of ridges and maxima of Gaussian kernel densities is also investigated when the kernel bandwidth approaches infinity. The results are applied to the nonlinear PCA and to finding significant maxima of such densities, which is a typical problem in visual object tracking.
Resumo:
Methods for both partial and full optimization of wavefunction parameters are explored, and these are applied to the LiH molecule. A partial optimization can be easily performed with little difficulty. But to perform a full optimization we must avoid a wrong minimum, and deal with linear-dependency, time step-dependency and ensemble-dependency problems. Five basis sets are examined. The optimized wavefunction with a 3-function set gives a variational energy of -7.998 + 0.005 a.u., which is comparable to that (-7.990 + 0.003) 1 of Reynold's unoptimized \fin ( a double-~ set of eight functions). The optimized wavefunction with a double~ plus 3dz2 set gives ari energy of -8.052 + 0.003 a.u., which is comparable with the fixed-node energy (-8.059 + 0.004)1 of the \fin. The optimized double-~ function itself gives an energy of -8.049 + 0.002 a.u. Each number above was obtained on a Bourrghs 7900 mainframe computer with 14 -15 hrs CPU time.
Resumo:
This research focuses on generating aesthetically pleasing images in virtual environments using the particle swarm optimization (PSO) algorithm. The PSO is a stochastic population based search algorithm that is inspired by the flocking behavior of birds. In this research, we implement swarms of cameras flying through a virtual world in search of an image that is aesthetically pleasing. Virtual world exploration using particle swarm optimization is considered to be a new research area and is of interest to both the scientific and artistic communities. Aesthetic rules such as rule of thirds, subject matter, colour similarity and horizon line are all analyzed together as a multi-objective problem to analyze and solve with rendered images. A new multi-objective PSO algorithm, the sum of ranks PSO, is introduced. It is empirically compared to other single-objective and multi-objective swarm algorithms. An advantage of the sum of ranks PSO is that it is useful for solving high-dimensional problems within the context of this research. Throughout many experiments, we show that our approach is capable of automatically producing images satisfying a variety of supplied aesthetic criteria.