962 resultados para Operations Research
Resumo:
The Solver Add-in of Microsoft Excel is widely used in courses on Operations Research and in industrial applications. Since the 2010 version of Microsoft Excel, the Solver Add-in comprises a so-called evolutionary solver. We analyze how this metaheuristic can be applied to the resource-constrained project scheduling problem (RCPSP). We present an implementation of a schedule-generation scheme in a spreadsheet, which combined with the evolutionary solver can be used for devising good feasible schedules. Our computational results indicate that using this approach, non-trivial instances of the RCPSP can be (approximately) solved to optimality.
Resumo:
We present a real-world staff-assignment problem that was reported to us by a provider of an online workforce scheduling software. The problem consists of assigning employees to work shifts subject to a large variety of requirements related to work laws, work shift compatibility, workload balancing, and personal preferences of employees. A target value is given for each requirement, and all possible deviations from these values are associated with acceptance levels. The objective is to minimize the total number of deviations in ascending order of the acceptance levels. We present an exact lexicographic goal programming MILP formulation and an MILP-based heuristic. The heuristic consists of two phases: in the first phase a feasible schedule is built and in the second phase parts of the schedule are iteratively re-optimized by applying an exact MILP model. A major advantage of such MILP-based approaches is the flexibility to account for additional constraints or modified planning objectives, which is important as the requirements may vary depending on the company or planning period. The applicability of the heuristic is demonstrated for a test set derived from real-world data. Our computational results indicate that the heuristic is able to devise optimal solutions to non-trivial problem instances, and outperforms the exact lexicographic goal programming formulation on medium- and large-sized problem instances.
Resumo:
Human resources managers often conduct assessment centers to evaluate candidates for a job position. During an assessment center, the candidates perform a series of tasks. The tasks require one or two assessors (e.g., managers or psychologists) that observe and evaluate the candidates. If an exercise is designed as a role-play, an actor is required who plays, e.g., an unhappy customer with whom the candidate has to deal with. Besides performing the tasks, each candidate has a lunch break within a prescribed time window. Each candidate should be observed by approximately half the number of the assessors; however, an assessor may not observe a candidate if they personally know each other. The planning problem consists of determining (1) resource-feasible start times of all tasks and lunch breaks and (2) a feasible assignment of assessors to candidates, such that the assessment center duration is minimized. We present a list-scheduling heuristic that generates feasible schedules for such assessment centers. We propose several novel techniques to generate the respective task lists. Our computational results indicate that our approach is capable of devising optimal or near-optimal schedules for real-world instances within short CPU time.
Resumo:
Human resources managers often use assessment centers to evaluate candidates for a job position. During an assessment center, the candidates perform a series of exercises. The exercises require one or two assessors (e.g., managers or psychologists) that observe and evaluate the candidate. If an exercise is designed as a role-play, an actor is required as well which plays, e.g., an unhappy customer with whom the candidate has to deal with. Besides performing the exercises, the candidates have a lunch break within a prescribed time window. Each candidate should be observed by approximately half the number of the assessors. Moreover, an assessor cannot be assigned to a candidate if they personally know each other. The planning problem consists of determining (1) resource-feasible start times of all exercises and lunch breaks and (2) a feasible assignment of assessors to candidates, such that the assessment center duration is minimized. We propose a list-scheduling heuristic that generates feasible schedules for such assessment centers. We develop novel procedures for devising an appropriate scheduling list and for incorporating the problem-specific constraints. Our computational results indicate that our approach is capable of devising optimal or near-optimal solutions to real-world instances within short CPU time.
Resumo:
Background: In Argentina, abortion has been decriminalized under certain circumstances since the enactment of the Penal Code in 1922. Nevertheless, access to abortion under this regulatory framework has been extremely limited in spite of some recent changes. This article reports the findings of the first phase of an operations research study conducted in the Province of Santa Fe, Argentina, regarding the implementation of the local legal and safe abortion access policy. Methods: The project combined research and training to generate a virtuous circle of knowledge production, decision-making, and the fostering of an informed healthcare policy. The project used a pre-post design of three phases: baseline, intervention, and evaluation. It was conducted in two public hospitals. An anonymous self-administered questionnaire (n=157) and semi-structured interviews (n=27) were applied to gather information about tacit knowledge about the regulatory framework; personal opinions regarding abortion and its decriminalization; opinions on the requirements needed to carry out legal abortions; and services responses to women in need of an abortion. Results: Firstly, a fairly high percentage of health care providers lack accurate information on current legal framework. This deficit goes side by side with a restrictive understanding of both health and rape indications. Secondly, while a great majority of health care providers support abortion under the circumstances consider in the Penal Code, most of them are reluctant towards unrestricted access to abortion. Thirdly, health care providers willingness to perform abortions is noticeably low given that only half of them are ready to perform an abortion when a womans life is at risk. Willingness is even lower for each of the other current legal indications. Conclusions: Findings suggest that there are important challenges for the implementation of a legal abortion policy. Results of the study call for specific strategies targeting health care providers in order to better inform about current legal abortion regulations and to sensitize them about abortion social determinants. The interpretation of the current legal framework needs to be broadened in order to reflect a comprehensive view of the health indication, and stereotypes regarding womens sexuality and abortion decisions need to be dismantled.
Resumo:
This paper describes a new exact algorithm PASS for the vertex coloring problem based on the well known DSATUR algorithm. At each step DSATUR maximizes saturation degree to select a new candidate vertex to color, breaking ties by maximum degree w.r.t. uncolored vertices. Later Sewell introduced a new tiebreaking strategy, which evaluated available colors for each vertex explicitly. PASS differs from Sewell in that it restricts its application to a particular set of vertices. Overall performance is improved when the new strategy is applied selectively instead of at every step. The paper also reports systematic experiments over 1500 random graphs and a subset of the DIMACS color benchmark.
Resumo:
A land classication method was designed for the Community of Madrid (CM), which has lands suitable for either agriculture use or natural spaces. The process started from an extensive previous CM study that contains sets of land attributes with data for 122 types and a minimum-requirements method providing a land quality classication (SQ) for each land. Borrowing some tools from Operations Research (OR) and from Decision Science, that SQ has been complemented by an additive valuation method that involves a more restricted set of 13 representative attributes analysed using Attribute Valuation Functions to obtain a quality index, QI, and by an original composite method that uses a fuzzy set procedure to obtain a combined quality index, CQI, that contains relevant information from both the SQ and the QI methods.
Resumo:
This paper focuses on the railway rolling stock circulation problem in rapid transit networks, in which frequencies are high and distances are relatively short. Although the distances are not very large, service times are high due to the large number of intermediate stops required to allow proper passenger flow. The main complicating issue is the fact that the available capacity at depot stations is very low, and both capacity and rolling stock are shared between different train lines. This forces the introduction of empty train movements and rotation maneuvers, to ensure sufficient station capacity and rolling stock availability. However, these shunting operations may sometimes be difficult to perform and can easily malfunction, causing localized incidents that could propagate throughout the entire network due to cascading effects. This type of operation will be penalized with the goal of selectively avoiding them and ameliorating their high malfunction probabilities. Critic trains, defined as train services that come through stations that have a large number of passengers arriving at the platform during rush hours, are also introduced. We illustrate our model using computational experiments drawn from RENFE (the main Spanish operator of suburban passenger trains) in Madrid, Spain. The results of the model, achieved in approximately 1 min, have been received positively by RENFE planners
Resumo:
The aim of this paper is to propose an integrated planning model to adequate the offered capacity and system frequencies to attend the increased passenger demand and traffic congestion around urban and suburban areas. The railway capacity is studied in line planning, however, these planned frequencies were obtained without accounting for rolling stock flows through the rapid transit network. In order to provide the problem more freedom to decide rolling stock flows and therefore better adjusting these flows to passenger demand, a new integrated model is proposed, where frequencies are readjusted. Then, the railway timetable and rolling stock assignment are also calculated, where shunting operations are taken into account. These operations may sometimes malfunction, causing localized incidents that could propagate throughout the entire network due to cascading effects. This type of operations will be penalized with the goal of selectively avoiding them and ameliorating their high malfunction probabilities. Swapping operations will also be ensured using homogeneous rolling stock material and ensuring parkings in strategic stations. We illustrate our model using computational experiments drawn from RENFE (the main Spanish operator of suburban passenger trains) in Madrid, Spain. The results show that through this integrated approach a greater robustness degree can be obtained
Resumo:
Abstract Transport is the foundation of any economy: it boosts economic growth, creates wealth, enhances trade, geographical accessibility and the mobility of people. Transport is also a key ingredient for a high quality of life, making places accessible and bringing people together. The future prosperity of our world will depend on the ability of all of its regions to remain fully and competitively integrated in the world economy. Efficient transport is vital in making this happen. Operations research can help in efficiently planning the design and operating transport systems. Planning and operational processes are fields that are rich in combinatorial optimization problems. These problems can be analyzed and solved through the application of mathematical models and optimization techniques, which may lead to an improvement in the performance of the transport system, as well as to a reduction in the time required for solving these problems. The latter aspect is important, because it increases the flexibility of the system: the system can adapt in a faster way to changes in the environment (i.e.: weather conditions, crew illness, failures, etc.). These disturbing changes (called disruptions) often enforce the schedule to be adapted. The direct consequences are delays and cancellations, implying many schedule adjustments and huge costs. Consequently, robust schedules and recovery plans must be developed in order to fight against disruptions. This dissertation makes contributions to two different fields: rail and air applications. Robust planning and recovery methods are presented. In the field of railway transport we develop several mathematical models which answer to RENFEs (the major railway operator in Spain) needs: 1. We study the rolling stock assignment problem: here, we introduce some robust aspects in order to ameliorate some operations which are likely to fail. Once the rolling stock assignment is known, we propose a robust routing model which aims at identifying the train units sequences while minimizing the expected delays and human resources needed to perform the sequences. 2. It is widely accepted that the sequential solving approach produces solutions that are not global optima. Therefore, we develop an integrated and robust model to determine the train schedule and rolling stock assignment. We also propose an integrated model to study the rolling stock circulations. Circulations are determined by the rolling stock assignment and routing of the train units. 3. Although our aim is to develop robust plans, disruptions will be likely to occur and recovery methods will be needed. Therefore, we propose a recovery method which aims to recover the train schedule and rolling stock assignment in an integrated fashion all while considering the passenger demand. In the field of air transport we develop several mathematical models which answer to IBERIAs (the major airline in Spain) needs: 1. We look at the airline-scheduling problem and develop an integrated approach that optimizes schedule design, fleet assignment and passenger use so as to reduce costs and create fewer incompatibilities between decisions. Robust itineraries are created to ameliorate misconnected passengers. 2. Air transport operators are continuously facing competition from other air operators and different modes of transport (e.g., High Speed Rail). Consequently, airline profitability is critically influenced by the airlines ability to estimate passenger demands and construct profitable flight schedules. We consider multi-modal competition including airline and rail, and develop a new approach that estimates the demand associated with a given schedule; and generates airline schedules and fleet assignments using an integrated schedule design and fleet assignment optimization model that captures the impacts of schedule decisions on passenger demand.
Resumo:
Assets are interrelated in risk analysis methodologies for information systems promoted by international standards. This means that an attack on one asset can be propagated through the network and threaten an organization's most valuable assets. It is necessary to valuate all assets, the direct and indirect asset dependencies, as well as the probability of threats and the resulting asset degradation. These methodologies do not, however, consider uncertain valuations and use precise values on different scales, usually percentages. Linguistic terms are used by the experts to represent assets values, dependencies and frequency and asset degradation associated with possible threats. Computations are based on the trapezoidal fuzzy numbers associated with these linguistic terms.
Resumo:
Bus rapid transit (BRT) systems are massive transport systems with medium/high capacity, high quality service and low infrastructure and operating costs. TransMilenio is Bogot's most important mass transportation system and one of the biggest BRT systems in the world, although it only has completed its third construction phase out of a total of eight. In this paper we review the proposals in the literature to optimize BRT system operation, with a special emphasis on TransMilenio, and propose a mathematical model that adapts elements of the above proposals and incorporates novel elements accounting for the features of TransMilenio system.