880 resultados para OXYGEN-CONSUMPTION
Resumo:
Este estudio presenta los efectos de la implementación de un programa de ejercicio como terapia complementaria del tratamiento del cáncer próstata. El diseño del estudio es casi-experimental con una muestra de 33 pacientes en fase de tratamiento. En la metodología del programa se utiliza la guía de la American College Sports Medicine Position Stand (ACSM, 2009). Se estudian las variables antropométricas, la fuerza-resistencia, el consumo máximo de oxígeno (VO2 Máx), la percepción subjetiva del esfuerzo, la incontinencia, el dolor y la Calidad de Vida (CdV). Al finalizar 24 semanas de programa, se observa una mejora significativa de la CdV del enfermo. Los resultados demuestran que la mejoría en la CdV viene mediada por la mejora de la capacidad física, funcional y psico-emocional del enfermo. El modelo de adherencia integrado al programa de ejercicio consigue mejorar la calidad y cantidad de ejercicio necesario para la práctica autónoma en el hogar
Resumo:
La eliminación biológica de nitrógeno amoniacal se ha llevado a cabo, habitualmente, a través del proceso convencional de nitrificación-desnitrificación. Sin embargo, los lixiviados generados en los depósitos controlados de residuos sólidos urbanos contienen elevadas cantidades de amonio y bajas concentraciones de materia orgánica biodegradable, así como una elevada salinidad. En este caso, para reducir el elevado coste económico que supone aplicar los procesos convencionales en este tipo de efluentes es conveniente desarrollar sistemas alternativos. Uno de estos nuevos procesos biológicos se basa en el proceso anammox (acrónimo en inglés de anaerobic ammonium oxidation) previa nitritación parcial de amonio a nitrito. El proceso anammox es un proceso autotrófico que realiza la conversión de amonio y nitrito a nitrógeno gas bajo condiciones anaerobias. El menor consumo de oxígeno durante el proceso de nitritación parcial y la no necesidad de adicionar materia orgánica para desnitrificar representan un importante ahorro económico respecto a los tratamientos convencionales
Resumo:
Considerando que a prática de exercício físico com uma intensidade pelo menos moderada melhora a capacidade funcional (Maines et al., 1997; Clara et al., 2002; Olney et al., 2006), a qualidade de vida (Leal et al., 2005; Azevedo & Leal, 2009; Flynn et al., 2009) e diminui os fatores de risco coronários (Maines et al., 1997; Squires & Hamm, 2007; Perk, 2009; Pimenta, 2010), propõe-se com o presente estudo analisar o efeito do exercício físico supervisionado, em fase ambulatório precoce, realizada na comunidade, ao nível da recuperação de doentes cardíacos. Método: Aplicar-se-á um estudo experimental, em doentes cardíacos de ambos os sexos, entre os 28 e os 80 anos. Atribuir-se-á particular ênfase às alterações induzidas pela aplicação do programa de exercício físico nos parâmetros bioquímicos (colesterol total, C-LDL, C-HDL, triglicéridos e glicose), na composição corporal (peso, índice de massa corporal, perímetro da cintura), na capacidade funcional (consumo de oxigénio pico –V02 pico, equivalente metabólico, duplo produto), no nível de atividade física, na ingestão alimentar e na qualidade de vida. O estudo terá uma duração superior a três meses, comparando dois grupos, um grupo submetido ao exercício físico supervisionado (ES) e outro aos cuidados usuais (CU), os quais serão alvo de duas avaliações (inicial e final), avaliando-se a média e o desvio-padrão para todas as variáveis em estudo e recorrendo-se aos testes não paramétricos e paramétricos, para um nível de significância de p< .05. Resultados: Foram elegidos 52 doentes, sendo que 22 participaram no grupo cuidados usuais (CU) e 30 no grupo exercício físico supervisionado (ES), observando-se que o grupo ES apresentou melhorias mais acentuadas quando comparadas com o grupo CU, ao nível dos seguintes indicadores: dispêndio de kcal/semana (+697.22% vs +320.20%); PC (-3.19% vs +5.85%); CT (-23.92% vs -9.29%), C-LDL (-32.52% vs -8.92%); total de kcal/dia ingeridas (-33,31% vs -2.58%); VO2 pico (+30.88% vs -3.57%); qualidade de vida geral (+53.86% vs +2.96%). Conclusão: Concluindo que o exercício físico multicomponente, inserido na fase de ambulatório precoce na comunidade, potencia a recuperação de doentes cardíacos influenciando positivamente os fatores de risco de progressão da doença coronária, a capacidade funcional e a qualidade de vida fundamentais para que o doente possa, pelos seus próprios meios, retomar a sua vida na comunidade.
Resumo:
Blood flow and net nutrient fluxes for portal-drained viscera (PDV) and liver ( total splanchnic tissues) were measured at 19 and 9 d prepartum and at 11, 21, 33, and 83 d in milk ( DIM) in 5 multiparous Holstein-Friesian cows. Cows were fed a grass silage-based gestation ration initially and a corn silage-based lactation ration peripartum and postpartum. Meals were fed at 8-h intervals and hourly (n = 8) measures of splanchnic metabolism were started before ( 0730 h and 0830 h) feeding at 0830 h. Dry matter intakes (DMI) at 19 and 9 d prepartum were not different. Metabolism changes measured from 19 to 9 d prepartum were lower arterial insulin and acetate, higher arterial nonesterified fatty acids and increased net liver removal of glycerol. After calving, PDV and liver blood flow and oxygen consumption more than doubled as DMI and milk yield increased, but 85 and 93% of the respective increases in PDV and liver blood flow at 83 DIM had occurred by 11 DIM. Therefore, factors additional to DMI must also contribute to increased blood flow in early lactation. Most postpartum changes in net PDV and liver metabolism could be attributed to increases in DMI and digestion or increased milk yield and tissue energy loss. Glucose release was increasingly greater than calculated requirements as DIM increased, presumably as tissue energy balance increased. Potential contributions of lactate, alanine, and glycerol to liver glucose synthesis were greatest at 11 DIM but decreased by 83 DIM. Excluding alanine, there was no evidence of an increased contribution of amino acids to liver glucose synthesis is required in early lactation. Increased net liver removal of propionate (69%), lactate (20%), alanine (8%), and glycerol (4%) can account for increased liver glucose release in transition cows from 9 d before to 11 d after calving.
Resumo:
Myostatin (Mstn) participates in the regulation of skeletal muscle size and has emerged as a regulator of muscle metabolism. Here, we hypothesized that lack of myostatin profoundly depresses oxidative phosphorylation-dependent muscle function. Toward this end, we explored Mstn/ mice as a model for the constitutive absence of myostatin and AAV-mediated overexpression of myostatin propeptide as a model of myostatin blockade in adult wild-type mice. We show that muscles from Mstn/ mice, although larger and stronger, fatigue extremely rapidly. Myostatin deficiency shifts muscle from aerobic toward anaerobic energy metabolism, as evidenced by decreased mitochondrial respiration, reduced expression of PPAR transcriptional regulators, increased enolase activity, and exercise-induced lactic acidosis. As a consequence, constitutively reduced myostatin signaling diminishes exercise capacity, while the hypermuscular state of Mstn/ mice increases oxygen consumption and the energy cost of running. We wondered whether these results are the mere consequence of the congenital fiber-type switch toward a glycolytic phenotype of constitutive Mstn/ mice. Hence, we overexpressed myostatin propeptide in adult mice, which did not affect fiber-type distribution, while nonetheless causing increased muscle fatigability, diminished exercise capacity, and decreased Pparb/d and Pgc1a expression. In conclusion, our results suggest that myostatin endows skeletal muscle with high oxidative capacity and low fatigability, thus regulating the delicate balance between muscle mass, muscle force, energy metabolism, and endurance capacity.
Resumo:
Although seasonal metabolic variation in ectothermic tetrapods has been investigated primarily in the context of species showing some level of metabolic depression during winter, but several species of anurans maintain their activity patterns throughout the year in tropical and subtropical areas. The tree-frog Hypsiboas prasinus occurs in the subtropical Atlantic Forest and remains reproductively active during winter, at temperatures below 10 degrees C. We compared males calling in summer and winter, and found that males of H. prasinus exhibit seasonal adjustments in metabolic and morphometric variables. Individuals calling during winter were larger and showed higher resting metabolic rates than those calling during summer. Calling rates were not affected by season. Winter animals showed lower liver and heart activity level of citrate synthase (CS), partially compensated by larger liver mass. Winter individuals also showed higher activity Of pyruvate kinase (PK) and lower activity of CS in trunk muscles, and higher activity of CS in leg muscles. Winter metabolic adjustments seem to be achieved by both compensatory mechanisms to the lower environmental temperature and a seasonally oriented aerobic depression of several organs. The impact of seasonal metabolic changes on calling performance and the capacity of subtropical anurans for metabolic thermal acclimatization are also discussed. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Virtually every mammalian cell, including cardiomyocytes, possesses an intrinsic circadian clock. The role of this transcriptionally based molecular mechanism in cardiovascular biology is poorly understood. We hypothesized that the circadian clock within the cardiomyocyte influences diurnal variations in myocardial biology. We, therefore, generated a cardiomyocyte-specific circadian clock mutant (CCM) mouse to test this hypothesis. At 12 wk of age, CCM mice exhibit normal myocardial contractile function in vivo, as assessed by echocardiography. Radiotelemetry studies reveal attenuation of heart rate diurnal variations and bradycardia in CCM mice (in the absence of conduction system abnormalities). Reduced heart rate persisted in CCM hearts perfused ex vivo in the working mode, highlighting the intrinsic nature of this phenotype. Wild-type, but not CCM, hearts exhibited a marked diurnal variation in responsiveness to an elevation in workload (80 mmHg plus 1 mu M epinephrine) ex vivo, with a greater increase in cardiac power and efficiency during the dark (active) phase vs. the light (inactive) phase. Moreover, myocardial oxygen consumption and fatty acid oxidation rates were increased, whereas cardiac efficiency was decreased, in CCM hearts. These observations were associated with no alterations in mitochondrial content or structure and modest mitochondrial dysfunction in CCM hearts. Gene expression microarray analysis identified 548 and 176 genes in atria and ventricles, respectively, whose normal diurnal expression patterns were altered in CCM mice. These studies suggest that the cardiomyocyte circadian clock influences myocardial contractile function, metabolism, and gene expression.
Resumo:
In trypanosomatids the involvement of mitochondrial complex I in NADH oxidation has long been debated. Here, we took advantage of natural Trypanosoma cruzi mutants which present conspicuous deletions in ND4, ND5 and ND7 genes coding for complex I subunits to further investigate its functionality. Mitochondrial bioenergetics of wild type and complex I mutants showed no significant differences in oxygen consumption or respiratory control ratios in the presence of NADH-linked substrates or FADH(2)-generating succinate. No correlation could be established between mitochondrial membrane potentials and ND deletions. Since release of reactive oxygen species occurs at complex I, we measured mitochondrial H(2)O(2) formation induced by different substrates. Significant differences not associated to ND deletions were observed among the parasite isolates, demonstrating that these mutations are not important for the control of oxidant production. Our data support the notion that complex I has a limited function in T. cruzi.
Resumo:
Lipid peroxidation produces a large number of reactive aldehydes as secondary products. We have previously shown that the reaction of cytochrome c with trans,trans-2, 4-decadienal (DDE), an aldehyde generated as a product of lipid peroxidation in cell membranes, results in the formation of adducts. Mass spectrometry analysis indicated that His-33, Lys-39, Lys-72 and Lys-100 in cytochrome c were modified by DDE. In the present work, we investigated the effect of DDE on isolated rat liver mitochondria. DDE (162 mu M) treatment increases the rate of mitochondrial oxygen consumption. Extensive mitochondrial swelling upon treatment with DDE (900 nM-162 mu M) was observed by light scattering and transmission electron microscopy experiments. DDE-induced loss of inner mitochondrial membrane potentials, monitored by safranin O fluorescence, was also observed. Furthermore, DDE-treated mitochondria showed an increase in lipid peroxidation, as monitored by MDA formation. These results suggest that reactive aldehydes promote mitochondrial dysfunction.
Resumo:
Aims: In the present work we investigated the in vitro effect of cis-4-decenoic acid, the pathognomonic metabolite of medium-chain acyl-CoA dehydrogenase deficiency, on various parameters of bioenergetic homeostasis in rat brain mitochondria. Main methods: Respiratory parameters determined by oxygen consumption were evaluated, as well as membrane potential, NAD(P)H content, swelling and cytochrome c release in mitochondrial preparations from rat brain, using glutamate plus malate or succinate as substrates. The activities of citric acid cycle enzymes were also assessed. Key findings: cis-4-decenoic acid markedly increased state 4 respiration, whereas state 3 respiration and the respiratory control ratio were decreased. The ADP/O ratio, the mitochondrial membrane potential, the matrix NAD(P)H levels and aconitase activity were also diminished by cis-4-decenoic acid. These data indicate that this fatty acid acts as an uncoupler of oxidative phosphorylation and as a metabolic inhibitor. cis-4-decenoic acid also provoked a marked mitochondrial swelling when either KCl or sucrose was used in the incubation medium and also induced cytochrome c release from mitochondria, suggesting a non-selective permeabilization of the inner mitochondria! membrane. Significance: It is therefore presumed that impairment of mitochondrial homeostasis provoked by cis-4-decenoic acid may be involved in the brain dysfunction observed in medium-chain acyl-CoA dehydrogenase deficient patients. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Acetoacetate (AA) and 2-methylacetoacetate (MAA) are accumulated in metabolic disorders such as diabetes and isoleucinemia. Here we examine the mechanism of AA and MAA aerobic oxidation initiated by myoglobin (Mb)/H(2)O(2). We propose a chemiluminescent route involving a dioxetanone intermediate whose thermolysis yields triplet alpha-dicarbonyl species (methylglyoxal and diacetyl). The observed ultraweak chemiluminescence increased linearly on raising the concentration of either Mb (10-500 mu M) or AA (10-100 mM). Oxygen uptake studies revealed that MAA is almost a 100-fold more reactive than AA. EPR spin-trapping studies with MNP/MAA revealed the intermediacy of an alpha-carbon-centered radical and acetyl radical. The latter radical, probably derived from triplet diacetyl, is totally suppressed by sorbate, a well-known quencher of triplet carbonyls. Furthermore, an EPR signal assignable to MNP-AA(center dot) adduct was observed and confirmed by isotope effects. Oxygen consumption and a-dicarbonyl yield were shown to be dependent on AA or MAA concentrations (1-50 mM) and on H(2)O(2) or tert-butOOH added to the Mb-containing reaction mixtures. That ferrylMb is involved in a peroxidase cycle acting on the substrates is suggested by the reaction pH profiles and immunospin-trapping experiments. The generation of radicals and triplet dicarbonyl products by Mb/H(2)O(2)/beta-ketoacids may contribute to the adverse health effects of ketogenic unbalance. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We previously demonstrated that Bis[(2-oxindol-3-ylimino)-2-(2-aminoethyl) pyridine-N, N`] copper(II) [Cu(isaepy)(2)] was an efficient inducer of the apoptotic mitochondrial pathway. Here, we deeply dissect the mechanisms underlying the ability of Cu(isaepy)(2) to cause mitochondriotoxicity. In particular, we demonstrate that Cu(isaepy)(2) increases NADH-dependent oxygen consumption of isolated mitochondria and that this phenomenon is associated with oxy-radical production and insensitive to adenosine diphosphate. These data indicate that Cu(isaepy)(2) behaves as an uncoupler and this property is also confirmed in cell systems. Particularly, SH-SY5Y cells show: (i) an early loss of mitochondrial transmembrane potential; (ii) a decrease in the expression levels of respiratory complex components and (iii) a significant adenosine triphosphate (ATP) decrement. The causative energetic impairment mediated by Cu(isaepy)(2) in apoptosis is confirmed by experiments carried out with rho(0) cells, or by glucose supplementation, where cell death is significantly inhibited. Moreover, gastric and cervix carcinoma AGS and HeLa cells, which rely most of their ATP production on oxidative phosphorylation, show a marked sensitivity toward Cu(isaepy)(2). Adenosine monophosphate-activated protein kinase (AMPK), which is activated by events increasing the adenosine monophosphate: ATP ratio, is deeply involved in the apoptotic process because the overexpression of its dominant/negative form completely abolishes cell death. Upon glucose supplementation, AMPK is not activated, confirming its role as fuel-sensing enzyme that positively responds to Cu(isaepy)(2)-mediated energetic impairment by committing cells to apoptosis. Overall, data obtained indicate that Cu(isaepy)(2) behaves as delocalized lipophilic cation and induces mitochondrial-sited reactive oxygen species production. This event results in mitochondrial dysfunction and ATP decrease, which in turn triggers AMPK-dependent apoptosis.
Resumo:
2,4-Dinitrophenol (DNP) is classically known as a mitochondrial uncoupler and, at high concentrations, is toxic to a variety of cells. However, it has recently been shown that, at subtoxic concentrations, DNP protects neurons against a variety of insults and promotes neuronal differentiation and neuritogenesis. The molecular and cellular mechanisms underlying the beneficial neuroactive properties of DNP are still largely unknown. We have now used DNA microarray analysis to investigate changes in gene expression in rat hippocampal neurons in culture treated with low micromolar concentrations of DNP. Under conditions that did not affect neuronal viability, high-energy phosphate levels or mitochondrial oxygen consumption, DNP induced up-regulation of 275 genes and down-regulation of 231 genes. Significantly, several up-regulated genes were linked to intracellular cAMP signaling, known to be involved in neurite outgrowth, synaptic plasticity, and neuronal survival. Differential expression of specific genes was validated by quantitative RT-PCR using independent samples. Results shed light on molecular mechanisms underlying neuroprotection by DNP and point to possible targets for development of novel therapeutics for neurodegenerative disorders.
Resumo:
Sugarcane spirit extracts of six different Brazilian woods for potential use in manufacturing aging casks were compared with similar extracts of five oak samples from different geographic origin and heat treatment regarding: (1) content of phenolics and copper; (2) radical reducing capacity and reactivity toward 2,2-diphenyl-1-picrylhydrazyl radical (DPPH center dot); and (3) effect on the rate of oxygen depletion rate in a peroxidating lipid model system. Total phenolic contents of the Brazilian wood extracts ranged from 0.65 (canela-sassafras) to 6.4 (jatoba) mmol(GAE) L(-1) and from 1.39 to 2.87 mmol(GAE) L(-1) for oak extracts. Flavonoids ranged from 1.54 x 10(-4) (ipe) to 6.5 x 10(-2) (oak) mmol(rutin) L(-1), and tannins from below the detection limit to 0.22 (jatoba) mmol(tannic acid) L(-1). Correlation was observed for the antioxidant capacity versus phenolics/flavonoids/tannins content, where oak extracts exhibit the highest radical scavenging capacity compared to Brazilian woods. Rate constant for radical scavenging by the extracts ranged from 4.9 x 10(3) M(-1) s(-1)(canela-sassafras) to 9.7 x 10(4) M(-1) s(-1) (oak). The oxygen consumption index showed the Brazilian woods amendoim and jatoba to be more efficient inhibitors than the oak extracts for lipid autoxidation initiated by metmyoglobin, despite that the oak extracts seem to be more efficient to scavenge DPPH center dot. No simple correlation with phenolics or copper content could be established, and a prooxidative tendency was observed for the extracts of canela-sassafras, castanheira, and louro-canela.
Resumo:
Objetivo: Avaliar os efeitos de um programa de exercício aeróbio sobre o condicionamento cardiorrespiratório em gestantes hígidas, de baixo risco, com sobrepeso. Métodos: 92 mulheres gestantes com sobrepeso (índice de massa corporal 26-31kg/m2), idade ≥ 20 anos, idade gestacional ≤ 20 semanas, com ausência de diabetes e hipertensão, foram alocadas aleatoriamente para realizar exercício aeróbio três vezes por semana com uma hora de duração ou para realizar sessões de relaxamento no grupo controle. Foram realizados dois testes de exercício submáximo em esteira, utilizando protocolo de rampa na entrada do estudo e outro teste após 12 semanas. Resultados: Em teste de exercício submáximo 12 semanas após randomização, o consumo de oxigênio (VO2) no limiar anaeróbio aumentou 17% (± 3) no grupo intervenção enquanto reduziu 16% (± 3) no grupo controle, de modo que após 12 semanas de exercício ajustado através da análise de covariância pelo o VO2 no limiar na linha de base, idade gestacional e idade materna foi de 2,68ml/kg/min (IC 95% 1,32-4,03) maior, P = 0,002. Conclusão: Exercício aeróbio realizado em gestantes com sobrepeso produz um aumento no limiar anaeróbio, sobrepondo os efeitos negativos da gestação sobre o condicionamento cardiorrespiratório em mulheres com estilo de vida sedentário.