908 resultados para OCS Printing
Resumo:
This article introduces a “pseudo classical” notion of modelling non-separability. This form of non-separability can be viewed as lying between separability and quantum-like non-separability. Non-separability is formalized in terms of the non-factorizabilty of the underlying joint probability distribution. A decision criterium for determining the non-factorizability of the joint distribution is related to determining the rank of a matrix as well as another approach based on the chi-square-goodness-of-fit test. This pseudo-classical notion of non-separability is discussed in terms of quantum games and concept combinations in human cognition.
Resumo:
In computational linguistics, information retrieval and applied cognition, words and concepts are often represented as vectors in high dimensional spaces computed from a corpus of text. These high dimensional spaces are often referred to as Semantic Spaces. We describe a novel and efficient approach to computing these semantic spaces via the use of complex valued vector representations. We report on the practical implementation of the proposed method and some associated experiments. We also briefly discuss how the proposed system relates to previous theoretical work in Information Retrieval and Quantum Mechanics and how the notions of probability, logic and geometry are integrated within a single Hilbert space representation. In this sense the proposed system has more general application and gives rise to a variety of opportunities for future research.
Resumo:
This paper presents an image based visual servoing system that is intended to be used for tracking and obtaining scientific observations of the HIFiRE vehicles. The primary aim of this tracking platform is to acquire and track the thermal signature emitted from the surface of the vehicle during the re-entry phase of the mission using an infra-red camera. The implemented visual servoing scheme uses a classical image based approach to identify and track the target using visual kinematic control. The paper utilizes simulation and experimental results to show the tracking performance of the system using visual feedback. Discussions on current implementation and control techniques to further improve the performance of the system are also explored.
Resumo:
YEAR: 2010 ROLE: Artist FORMAT: Miniature 3D Sculpture produced in resin using 3D printing technologies. WITH: International Touring Show ‘Inside Out’ WHAT: A miniature sculpture that contributes towards my ongoing explorations into how our collective ability to sustain (the future) is as much a cultural problematic as it is an economic or technological one. OVERVIEW: The curatorial brief was for each curated artist was to design a piece in CAD suitable for 3D resin printing - The object should be entirely generated through 3D visualisation and modelling tools and should be machined and shipped within the dimensions of 6cm x 6cm x 6cm. My design for this brief was influenced by recent research I had conducted in Mildura in the Sunraysia irrigated region of NW Victoria. Each name set within the work is an Australian soldier/settler – who, on returning from the ‘Great War’ was duly awarded a ‘block’ in Australia’s new inland irrigated settlements - with the explicit task of clearing it to plant and reap. Through their concerted and well-intentioned efforts, these workers began to profoundly re-shape Australia’s marginal country - inadvertently presaging the bleak future faced today by many of Australia’s inland lands and river systems. Furthermore, through that time's predominant colonial conception of ‘terra nullius’ (this land is unoccupied and therefore free to be claimed) they each played a small but formative part in building the profound cultural divide between land and peoples that still haunts Australia today. THE EXHIBITION: Inside Out is a compelling international touring exhibition featuring forty-six miniature sculptures produced in resin using 3D printing technologies. Developments in virtual computer visualisation and integrated digital technologies are giving contemporary makers new insight and opportunities to create objects and forms which were previously impossible to produce or difficult to envisage. The exhibition is the result of collaboration between the Art Technology Coalition, the University of Technology Sydney and RMIT University in Australia along with De Montfort University, Manchester Metropolitan University and Dartington College of Arts at University College Falmouth in the United Kingdom.
Resumo:
It is generally agreed that if authentic teacher change is to occur then the tacit knowledge about how and why they act in certain ways in the classroom be accessed and reflected upon. While critical reflection can and often is an individual experience there is evidence to suggest that teachers are more likely to engage in the process when it is approached in a collegial manner; that is, when other teachers are involved in and engaged with the same process. Teachers do not enact their profession in isolation but rather exist within a wider community of teachers. An outside facilitator can also play an active and important role in achieving lasting teacher change. According to Stein and Brown (1997) “an important ingredient in socially based learning is that graduations of expertise and experience exist when teachers collaborate with each other or outside experts” (p. 155). To assist in the effective professional development of teachers, outside facilitators, when used, need to provide “a dynamic energy producing interactive experience in which participants examine and explore the complex components of teaching” (Bolster, 1995, p. 193). They also need to establish rapport with the participating teachers that is built on trust and competence (Hyde, Ormiston, & Hyde, 1994). For this to occur, professional development involving teachers and outside facilitators or researchers should not be a one-off event but an ongoing process of engagement that enables both the energy and trust required to develop. Successful professional development activities are therefore collaborative, relevant and provide individual, specialised attention to the teachers concerned. The project reported here aimed to provide professional development to two Year 3 teachers to enhance their teaching of a new mathematics content area, mental computation. This was achieved through the teachers collaborating with a researcher to design an instructional program for mental computation that drew on theory and research in the field.
Resumo:
In the present paper, we introduce BioPatML.NET, an application library for the Microsoft Windows .NET framework [2] that implements the BioPatML pattern definition language and sequence search engine. BioPatML.NET is integrated with the Microsoft Biology Foundation (MBF) application library [3], unifying the parsers and annotation services supported or emerging through MBF with the language, search framework and pattern repository of BioPatML. End users who wish to exploit the BioPatML.NET engine and repository without engaging the services of a programmer may do so via the freely accessible web-based BioPatML Editor, which we describe below.
Resumo:
Due to their large surface area, complex chemical composition and high alveolar deposition rate, ultrafine particles (UFPs) (< 0.1 ìm) pose a significant risk to human health and their toxicological effects have been acknowledged by the World Health Organisation. Since people spend most of their time indoors, there is a growing concern about the UFPs present in some indoor environments. Recent studies have shown that office machines, in particular laser printers, are a significant indoor source of UFPs. The majority of printer-generated UFPs are organic carbon and it is unlikely that these particles are emitted directly from the printer or its supplies (such as paper and toner powder). Thus, it was hypothesised that these UFPs are secondary organic aerosols (SOA). Considering the widespread use of printers and human exposure to these particles, understanding the processes involved in particle formation is of critical importance. However, few studies have investigated the nature (e.g. volatility, hygroscopicity, composition, size distribution and mixing state) and formation mechanisms of these particles. In order to address this gap in scientific knowledge, a comprehensive study including state-of-art instrumental methods was conducted to characterise the real-time emissions from modern commercial laser printers, including particles, volatile organic compounds (VOCs) and ozone (O3). The morphology, elemental composition, volatility and hygroscopicity of generated particles were also examined. The large set of experimental results was analysed and interpreted to provide insight into: (1) Emissions profiles of laser printers: The results showed that UFPs dominated the number concentrations of generated particles, with a quasi unimodal size distribution observed for all tests. These particles were volatile, non-hygroscopic and mixed both externally and internally. Particle microanalysis indicated that semi-volatile organic compounds occupied the dominant fraction of these particles, with only trace quantities of particles containing Ca and Fe. Furthermore, almost all laser printers tested in this study emitted measurable concentrations of VOCs and O3. A positive correlation between submicron particles and O3 concentrations, as well as a contrasting negative correlation between submicron particles and total VOC concentrations were observed during printing for all tests. These results proved that UFPs generated from laser printers are mainly SOAs. (2) Sources and precursors of generated particles: In order to identify the possible particle sources, particle formation potentials of both the printer components (e.g. fuser roller and lubricant oil) and supplies (e.g. paper and toner powder) were investigated using furnace tests. The VOCs emitted during the experiments were sampled and identified to provide information about particle precursors. The results suggested that all of the tested materials had the potential to generate particles upon heating. Nine unsaturated VOCs were identified from the emissions produced by paper and toner, which may contribute to the formation of UFPs through oxidation reactions with ozone. (3) Factors influencing the particle emission: The factors influencing particle emissions were also investigated by comparing two popular laser printers, one showing particle emissions three orders of magnitude higher than the other. The effects of toner coverage, printing history, type of paper and toner, and working temperature of the fuser roller on particle number emissions were examined. The results showed that the temperature of the fuser roller was a key factor driving the emission of particles. Based on the results for 30 different types of laser printers, a systematic positive correlation was observed between temperature and particle number emissions for printers that used the same heating technology and had a similar structure and fuser material. It was also found that temperature fluctuations were associated with intense bursts of particles and therefore, they may have impact on the particle emissions. Furthermore, the results indicated that the type of paper and toner powder contributed to particle emissions, while no apparent relationship was observed between toner coverage and levels of submicron particles. (4) Mechanisms of SOA formation, growth and ageing: The overall hypothesis that UFPs are formed by reactions with the VOCs and O3 emitted from laser printers was examined. The results proved this hypothesis and suggested that O3 may also play a role in particle ageing. In addition, knowledge about the mixing state of generated particles was utilised to explore the detailed processes of particle formation for different printing scenarios, including warm-up, normal printing, and printing without toner. The results indicated that polymerisation may have occurred on the surface of the generated particles to produce thermoplastic polymers, which may account for the expandable characteristics of some particles. Furthermore, toner and other particle residues on the idling belt from previous print jobs were a very clear contributing factor in the formation of laser printer-emitted particles. In summary, this study not only improves scientific understanding of the nature of printer-generated particles, but also provides significant insight into the formation and ageing mechanisms of SOAs in the indoor environment. The outcomes will also be beneficial to governments, industry and individuals.
Resumo:
Though stadium style seating in large lecture theatres may suggest otherwise, effective teaching and learning is a not a spectator sport. A challenge in creating effective learning environments in both physical and virtual spaces is to provide optimal opportunity for student engagement in active learning. Queensland University of Technology (QUT) has developed the Open Web Lecture (OWL), a new web-based student response application, which seamlessly integrates a virtual learning environment within the physical learning space. The result is a blended learning experience; a fluid collaboration between academic and students connected to OWL via the University’s Wi-Fi using their own laptop or mobile web device. QUT is currently piloting the OWL application to encourage student engagement. OWL offers opportunities for participants to: • Post comments and questions • Reply to comments • "Like" comments • Poll students and review data • Review archived sessions. Many of these features instinctively appeal to student users of social networking media, yet avail the academic of control within the University network. Student privacy is respected through a system of preserving peer-peer anonymity, a functionality that seeks to address a traditional reluctance to speak up in large classes. The pilot is establishing OWL as an opportunity for engaging students in active learning opportunities by enabling • virtual learning in physical spaces for large group lectures, seminar groups, workshops and conferences • live collaborative technology connecting students and the academic via the wireless network using their own laptop or mobile device • an non- intimidating environment in which to ask questions • promotion of a sense of community • instant feedback • problem based learning. The student and academic response to OWL has been overwhelmingly positive, crediting OWL as an easy to use application, which creates effective learning opportunities though interactivity and immediate feedback. This poster and accompanying online presentation of the technology will demonstrate how OWL offers new possibilities for active learning in physical spaces by: • providing increased opportunity for student engagement • supporting a range of learners and learning activities • fostering blended learning experiences. The presentation will feature visual displays of the technology, its various interfaces and feedback including clips from interviews with students and academics participating in the early stages of the pilot.
Resumo:
This position paper provides an overview of work conducted and an outlook of future directions within the field of Information Retrieval (IR) that aims to develop novel models, methods and frameworks inspired by Quantum Theory (QT).
Resumo:
Quantum theory has recently been employed to further advance the theory of information retrieval (IR). A challenging research topic is to investigate the so called quantum-like interference in users’ relevance judgement process, where users are involved to judge the relevance degree of each document with respect to a given query. In this process, users’ relevance judgement for the current document is often interfered by the judgement for previous documents, due to the interference on users’ cognitive status. Research from cognitive science has demonstrated some initial evidence of quantum-like cognitive interference in human decision making, which underpins the user’s relevance judgement process. This motivates us to model such cognitive interference in the relevance judgement process, which in our belief will lead to a better modeling and explanation of user behaviors in relevance judgement process for IR and eventually lead to more user-centric IR models. In this paper, we propose to use probabilistic automaton(PA) and quantum finite automaton (QFA), which are suitable to represent the transition of user judgement states, to dynamically model the cognitive interference when the user is judging a list of documents.
Resumo:
An increasing number of researchers have hypothesized that ozone may be involved in the particle formation processes that occur during printing, however no studies have investigated this further. In the current study, this hypothesis was tested in a chamber study by adding supplemental ozone to the chamber after a print job without measurable ozone emissions. Subsequent particle number concentration and size distribution measurements showed that new particles were formed minutes after the addition of ozone. The results demonstrated that ozone did react with printer-generated volatile organic compounds (VOCs) to form secondary organic aerosols (SOAs). The hypothesis was further confirmed by the observation of correlations among VOCs, ozone, and particles concentrations during a print job with measurable ozone emissions. The potential particle precursors were identified by a number of furnace tests, which suggested that squalene and styrene were the most likely SOA precursors with respect to ozone. Overall, this study significantly improved scientific understanding of the formation mechanisms of printer-generated particles, and highlighted the possible SOA formation potential of unsaturated nonterpene organic compounds by ozone-initiated reactions in the indoor environment. © 2011 American Chemical Society.
Resumo:
Epidemiological research has consistently shown an association between fine and ultrafine particle concentrations, and increases in both respiratory and cardiovascular morbidity and mortality. These particles, often found in vehicle emissions outside buildings, can penetrate inside via their envelopes and mechanically ventilated systems. Indoor activities such as printing, cooking and cleaning, as well as the movement of building occupants are also an additional source of these particles. In this context, the filtration systems of mechanically ventilated buildings can reduce indoor particle concentrations. Several studies have quantified the efficiency of dry-media and electrostatic filters, but they mainly focused on the particle size range > 300 nm. Some others studied ultrafine particles but their investigations were conducted in laboratories. At this point, there is still only limited information on in situ filter efficiency and an incomplete understanding of filtration influence on I/O ratios of particle concentrations. To help address these gaps in knowledge and provide new information for the selection of appropriate filter types in office building HVAC systems, we aimed to: (1) measure particle concentrations at up and down stream flows of filter devices, as well as outdoor and indoor office buildings; (2) quantify efficiency of different filter types at different buildings; and (3) assess the impact of these filters on I/O ratios at different indoor and outdoor source operation scenarios.
Resumo:
The Akin collection is the outcome of a project to lead, guide and curate a luxury, retail-ready fashion collection from a collaboration between five emerging fashion designers and five established Indigenous artists. Research background There is a history of Indigenous artists in Australia being treated unethically; by misappropriation and misrepresentation of their work, inequity of payment for their creativity and little acknowledgement of their cultural contribution to collaborative fashion product sold globally. This has created an atmosphere of bad press for fashion, as well as a fear for emerging designers to include/collaborate with Indigenous artists for textile prints. This fear has been so intense that many emerging Australian designers are now seeking collaboration with other countries’ Indigenous communities, thus missing out on a rich cultural and diverse aesthetic that could brand a truly unique Australian label in the international marketplace. The fashion brands that have collaborated with Indigenous Australian artists have traditionally been a ONE designer label incorporating Indigenous prints, for collections that have little acknowledgement of the artist’s contribution and strong branding for the label and/or fashion designer. This collection seeks to create an equitable and profitable fashion collection under one brand where all artists and designers receive equal payment, equal promotion/credibility, as well as equal royalties for any garments ordered by retailers. Research question Is it possible to curate an ethical, luxury, retail-ready, international fashion brand with a collaboration of five (5) emerging designers and five (5) Indigenous artists? Research contribution In the fashion industry, existing collaborations for Australian Indigenous artists have been with ONE fashion designer or one existing fashion label. This is the first fashion collection created under one brand name with equal credibility and profits for both artists and designers. The process involved presenting workshops ranging from understanding the logistics and timing of the fashion supply chain, costing of garments, the process of ‘ranging’ fashion product for a collection and creating repeat prints from a specific artwork, ready for digital printing. A workshop was also facilitated so both designer and artist could work together to create (and co-own) unique t shirt prints. Lawyers were consulted and ethical contracts were drawn up to cover all participants in this innovative collaboration. While the collaboration of artist and designer was important, the collection required curation of all elements so that the final collection came together as a professional and cohesive, quality, retail- ready product. This could only be created by experienced practitioners. Research significance The Akin Collection is the first Australian fashion brand to be created as a collaboration between five equally recognised Indigenous artists and five emerging fashion designers. It has familiarized the Indigenous artists to the logistics and culture of the fashion industry and the emerging fashion designers have been familiarized to the logistics and culture of how to collaborate with the unique Indigenous artwork that exists in Australia. After only three months, this culminated in a fashion parade showcasing the Akin collection to over 400 members of the public, government, media and retail. Feedback has been strong from the media and the industry, and a lookbook and photoshoot has been organised to promote and sell the collection both nationally and internationally. These concepts plus the curation outlined, has created a successful, luxury, quality collection ready for the international runways. This project has devised an ethical template for other Indigenous artists and emerging designers to create fashion collections that offer a unique aesthetic that could position and brand Australian fashion in the international marketplace. Key Words Indigenous artists, emerging fashion designers, Australian fashion design, ethical fashion, luxury Australian brand
Resumo:
Cartilage defects heal imperfectly and osteoarthritic changes develop frequently as a result. Although the existence of specific behaviours of chondrocytes derived from various depth-related zones in vitro has been known for over 20 years, only a relatively small body of in vitro studies has been performed with zonal chondrocytes and current clinical treatment strategies do not reflect these native depth-dependent (zonal) differences. This is surprising since mimicking the zonal organization of articular cartilage in neo-tissue by the use of zonal chondrocyte subpopulations could enhance the functionality of the graft. Although some research groups including our own have made considerable progress in tailoring culture conditions using specific growth factors and biomechanical loading protocols, we conclude that an optimal regime has not yet been determined. Other unmet challenges include the lack of specific zonal cell sorting protocols and limited amounts of cells harvested per zone. As a result, the engineering of functional tissue has not yet been realized and no long-term in vivo studies using zonal chondrocytes have been described. This paper critically reviews the research performed to date and outlines our view of the potential future significance of zonal chondrocyte populations in regenerative approaches for the treatment of cartilage defects. Secondly, we briefly discuss the capabilities of additive manufacturing technologies that can not only create patient-specific grafts directly from medical imaging data sets but could also more accurately reproduce the complex 3D zonal extracellular matrix architecture using techniques such as hydrogel-based cell printing.
Resumo:
Particle collections from the stratosphere via either the JSC Curatorial Program or the U2 Program (NASA Ames) occur between 16km and 19km altitude and are usually part of ongoing experiments to measure parameters related to the aerosol layer. Fine-grained aerosols (<0.1µm) occur in the stratosphere up to 35km altitude and are concentrated between 15km and 25km altitude[1]. All interplanetary dust particles (IDP's) from these stratospheric collections must pass through this aerosol layer before reaching the collection altitude. The major compounds in this aerosol layer are sulfur rich particulates (<0.1µm) and gases and include H2S04, OCS, S02 and CS2 [2].In order to assess possible surface reactions of interplanetary dust particles (IDP's) with ambient aerosols in the stratosphere, we have initiated a Surface Auger Microprobe (SAM) and electron microscope study of selected particles from the JSC Cosmic Dust Collection.