872 resultados para Nutritional geometry
Resumo:
We have presented two simple methods of ''unfixed-position shield'' and ''pulling out'' for making sharp STM Pt-Ir tips with low aspect ratio by electrochemical etching in KCN/NaOH aqueous solution and ECSTM tips coated with paraffin. By limiting the elec
Resumo:
The tube diameter in the reptation model is the distance between a given chain segment and its nearest segment in adjacent chains. This dimension is thus related to the cross-sectional area of polymer chains and the nearest approach among chains, without effects of thermal fluctuation and steric repulsion. Prior calculated tube diameters are much larger, about 5 times, than the actual chain cross-sectional areas. This is ascribed to the local freedom required for mutual rearrangement among neighboring chain segments. This tube diameter concept seems to us to infer a relationship to the corresponding entanglement spacing. Indeed, we report here that the critical molecular weight, M(c), for the onset of entanglements is found to be M(c) = 28 A/([R2]0/M), where A is the chain cross-sectional area and [R2]0 the mean-square end-to-end distance of a freely jointed chain of molecular weight M. The new, computed relationship between the critical number of backbone atoms for entanglement and the chain cross-sectional area of polymers, N(c) = A0,44, is concordant with the cross-sectional area of polymer chains being the parameter controlling the critical entanglement number of backbone atoms of flexible polymers.
Resumo:
A general characteristic of the electrochemical process coupling with a homogeneous catalytic reaction at an ultramicroelectrode under steady state is described. It was found that the electrochemical process coupling with homogeneous catalytic reaction has a similar steady state voltammetric wave at an ultramicroelectrode with arbitrary geometry. A method of determination for the kinetic constant of homogeneous catalytic reaction at an ultramicroelectrode with arbitrary geometry is proposed.
Resumo:
In this letter, a new wind-vector algorithm is presented that uses radar backscatter sigma(0) measurements at two adjacent subscenes of RADARSAT-1 synthetic aperture radar (SAR) images, with each subscene having slightly different geometry. Resultant wind vectors are validated using in situ buoy measurements and compared with wind vectors determined from a hybrid wind-retrieval model using wind directions determined by spectral analysis of wind-induced image streaks and observed by colocated QuikSCAT measurements. The hybrid wind-retrieval model consists of CMOD-IFR2 [applicable to C-band vertical-vertical (W) polarization] and a C-band copolarization ratio according to Kirchhoff scattering. The new algorithm displays improved skill in wind-vector estimation for RADARSAT-1 SAR data when compared to conventional wind-retrieval methodology. In addition, unlike conventional methods, the present method is applicable to RADARSAT-1 images both with and without visible streaks. However, this method requires ancillary data such as buoy measurements to resolve the ambiguity in retrieved wind direction.
Resumo:
We propose an affine framework for perspective views, captured by a single extremely simple equation based on a viewer-centered invariant we call "relative affine structure". Via a number of corollaries of our main results we show that our framework unifies previous work --- including Euclidean, projective and affine --- in a natural and simple way, and introduces new, extremely simple, algorithms for the tasks of reconstruction from multiple views, recognition by alignment, and certain image coding applications.
Resumo:
Three-dimensional models which contain both geometry and texture have numerous applications such as urban planning, physical simulation, and virtual environments. A major focus of computer vision (and recently graphics) research is the automatic recovery of three-dimensional models from two-dimensional images. After many years of research this goal is yet to be achieved. Most practical modeling systems require substantial human input and unlike automatic systems are not scalable. This thesis presents a novel method for automatically recovering dense surface patches using large sets (1000's) of calibrated images taken from arbitrary positions within the scene. Physical instruments, such as Global Positioning System (GPS), inertial sensors, and inclinometers, are used to estimate the position and orientation of each image. Essentially, the problem is to find corresponding points in each of the images. Once a correspondence has been established, calculating its three-dimensional position is simply a matter of geometry. Long baseline images improve the accuracy. Short baseline images and the large number of images greatly simplifies the correspondence problem. The initial stage of the algorithm is completely local and scales linearly with the number of images. Subsequent stages are global in nature, exploit geometric constraints, and scale quadratically with the complexity of the underlying scene. We describe techniques for: 1) detecting and localizing surface patches; 2) refining camera calibration estimates and rejecting false positive surfels; and 3) grouping surface patches into surfaces and growing the surface along a two-dimensional manifold. We also discuss a method for producing high quality, textured three-dimensional models from these surfaces. Some of the most important characteristics of this approach are that it: 1) uses and refines noisy calibration estimates; 2) compensates for large variations in illumination; 3) tolerates significant soft occlusion (e.g. tree branches); and 4) associates, at a fundamental level, an estimated normal (i.e. no frontal-planar assumption) and texture with each surface patch.
Fresh pasta enrichment with protein concentrate of tilapia: nutritional and sensory characteristics.
Resumo:
With the goal of developing and characterizing the nutritional and sensory aspects of fresh pasta supplemented with tilapia protein concentrate, four types of pasta were prepared, with inclusion of 0, 10, 20, or 30% of tilapia protein concentrate. Linear effects were observed (P < 0.01) in crude protein, total lipids, ash, carbohydrate, and caloric values; these parameters increased with increasing amounts of tilapia protein concentrate in the pasta. The concentration of Na, P, Ca, Mg, and Zn increased linearly (P < 0.01) in correlation with the increase in protein concentrate content, while Fe content decreased linearly (P < 0.01). In the sensory analysis, texture, overall impression, and the acceptance index demonstrated a cubic regression (P < 0.05), with the inclusion of 20% protein concentrate yielding the best scores. Including up to 30% of tilapia protein concentrate in pasta yields an increased nutritional value, but based on the sensory results, 20% of tilapia protein concentrate in pasta is the recommended maximum level.
Resumo:
Mavron, Vassili; Jungnickel, D.; McDonough, T.P., (2001) 'The Geometry of Frequency Squares', Journal of Combinatorial Theory, Series A 96, pp.376-387 RAE2008
Resumo:
BACKGROUND:Osteoporosis is characterized by low bone mass and compromised bone structure, heritable traits that contribute to fracture risk. There have been no genome-wide association and linkage studies for these traits using high-density genotyping platforms.METHODS:We used the Affymetrix 100K SNP GeneChip marker set in the Framingham Heart Study (FHS) to examine genetic associations with ten primary quantitative traits: bone mineral density (BMD), calcaneal ultrasound, and geometric indices of the hip. To test associations with multivariable-adjusted residual trait values, we used additive generalized estimating equation (GEE) and family-based association tests (FBAT) models within each sex as well as sexes combined. We evaluated 70,987 autosomal SNPs with genotypic call rates [greater than or equal to]80%, HWE p [greater than or equal to] 0.001, and MAF [greater than or equal to]10% in up to 1141 phenotyped individuals (495 men and 646 women, mean age 62.5 yrs). Variance component linkage analysis was performed using 11,200 markers.RESULTS:Heritability estimates for all bone phenotypes were 30-66%. LOD scores [greater than or equal to]3.0 were found on chromosomes 15 (1.5 LOD confidence interval: 51,336,679-58,934,236 bp) and 22 (35,890,398-48,603,847 bp) for femoral shaft section modulus. The ten primary phenotypes had 12 associations with 100K SNPs in GEE models at p < 0.000001 and 2 associations in FBAT models at p < 0.000001. The 25 most significant p-values for GEE and FBAT were all less than 3.5 x 10-6 and 2.5 x 10-5, respectively. Of the 40 top SNPs with the greatest numbers of significantly associated BMD traits (including femoral neck, trochanter, and lumbar spine), one half to two-thirds were in or near genes that have not previously been studied for osteoporosis. Notably, pleiotropic associations between BMD and bone geometric traits were uncommon. Evidence for association (FBAT or GEE p < 0.05) was observed for several SNPs in candidate genes for osteoporosis, such as rs1801133 in MTHFR; rs1884052 and rs3778099 in ESR1; rs4988300 in LRP5; rs2189480 in VDR; rs2075555 in COLIA1; rs10519297 and rs2008691 in CYP19, as well as SNPs in PPARG (rs10510418 and rs2938392) and ANKH (rs2454873 and rs379016). All GEE, FBAT and linkage results are provided as an open-access results resource at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007.CONCLUSION:The FHS 100K SNP project offers an unbiased genome-wide strategy to identify new candidate loci and to replicate previously suggested candidate genes for osteoporosis.
Resumo:
To investigate micronutrient intakes and the role of nutritional supplements in the diets of Irish adults aged 18-64 years and pre-school children aged 1-4 years. Analysis is based on data from the National Adult Nutrition Survey (NANS) (n=1274) and the National Pre-School Nutrition Survey (NPNS) (n=500). Food and beverage intakes and nutritional supplement use were recorded using 4-day food records. Nutrients were estimated using WISP© which is based on McCance and Widdowson’s The Composition of Foods, 6thEd and the Irish Food Composition Database. “Meats”, “milk/yoghurt”, “breads”, “fruit/fruit juices” and “breakfast cereals” made important contributions to the intakes of a number of micronutrients. Micronutrient intakes were generally adequate, with the exception of iron (in adult females and 1 year olds) and vitamin D (in all population groups). For iron, zinc, copper and vitamin B6, up to 2% of adults had intakes that exceeded the upper limit (UL). Small proportions of children had intakes of zinc (11%), copper (2%), retinol (4%) and folic acid (5%) exceeding the UL. Nutritional supplements (predominantly multivitamin and/or mineral preparations) were consumed by 28% of adults and 20% of pre-school children. Among users, supplements were effective in reducing the % with inadequate intakes for vitamins A and D (both population groups) and iron (adult females only). Supplement users had a lower prevalence of inadequate intakes for vitamin A and iron compared to non-users. In adults only, users had a lower prevalence of inadequate intakes for magnesium, calcium and zinc, and displayed better compliance with dietary recommendations and lifestyle characteristics compared with non-users. There is poor compliance among women of childbearing age for the recommendation to take a supplement containing 400µg/day of folic acid. These findings are important for the development of nutrition policies and future recommendations for adults and pre-school children in Ireland and the EU.
Resumo:
Coeliac disease is one of the most common food intolerances worldwide and at present the gluten free diet remains the only suitable treatment. A market overview conducted as part of this thesis on nutritional and sensory quality of commercially available gluten free breads and pasta showed that improvements are necessary. Many products show strong off-flavors, poor mouthfeel and reduced shelf-life. Since the life-long avoidance of the cereal protein gluten means a major change to the diet, it is important to also consider the nutritional value of products intending to replace staple foods such as bread or pasta. This thesis addresses this issue by characterising available gluten free cereal and pseudocereal flours to facilitate a better raw material choice. It was observed that especially quinoa, buckwheat and teff are high in essential nutrients, such as protein, minerals and folate. In addition the potential of functional ingredients such as inulin, β-glucan, HPMC and xanthan to improve loaf quality were evaluated. Results show that these ingredients can increase loaf volume and reduce crumb hardness as well as rate of staling but that the effect diverges strongly depending on the bread formulation used. Furthermore, fresh egg pasta formulations based on teff and oat flour were developed. The resulting products were characterised regarding sensory and textural properties as well as in vitro digestibility. Scanning electron and confocal laser scanning microscopy was used throughout the thesis to visualise structural changes occurring during baking and pasta making
Resumo:
Potatoes (Solanum Tuberosum L.) contain secondary metabolites that may have an impact on human health. The aim of this study was to assess the levels of some of these compounds in a wide range of varieties, including rare, heritage and commercial cultivars. Vitamin C, total carotenoids, phenolics, flavonoids, antioxidant activity and glycoalkaloids were determined, using spectroscopy and chromatography, in the skin and flesh of tubers grown in field trials. Transcript levels of key synthetic enzymes were assessed by qPCR. Accumulation of selected metabolites was higher in the skin than in the flesh of tubers, except ascorbate, which was undetected in the skin. Differences were on average 2.5 to 3-fold for carotenoids, 6-fold for phenolics, 15 to 16-fold for flavonoids, 21-fold for glycoalkaloids and 9 to 10-fold for antioxidant activity. Higher contents of carotenoids were associated with yellow skin or flesh, and higher values of phenolics, flavonoids and antioxidant activity with blue flesh. Variety ‘Burren’ had maxima values of carotenoids in skin and flesh, variety ‘Nicola’ of ascorbate, variety ‘Congo’ of phenolics, flavonoids and antioxidant activity in both tissues, except antioxidant activity in the skin, which was higher in ‘Edzell Blue’. Varieties ‘May Queen’ and ‘International Kidney’ had highest glycoalkaloid content in skin and flesh respectively. The effect of the environment was diverse: year of cultivation was significant for all metabolites, but site of cultivation was not for carotenoids and glycoalkaloids. Levels of expression of phenylalanine ammonia-lyase and chalcone synthase were higher in varieties accumulating high contents of phenolic compounds. However, levels of expression of phytoene synthase and L-galactono-1,4-lactone dehydrogenase were not different between varieties showing contrasting levels of carotenoids and ascorbate respectively. This work will help identify varieties that could be marketed as healthier and the most suitable varieties for extraction of high-value metabolites such as glycoalkaloids.
Resumo:
Animals must coordinate development with fluctuating nutrient availability. Nutrient availability governs post-embryonic development in Caenorhabditis elegans: larvae that hatch in the absence of food do not initiate post-embryonic development but enter "L1 arrest" (or "L1 diapause") and can survive starvation for weeks, while rapidly resume normal development once get fed. Insulin-like signaling (IIS) has been shown to be a key regulator of L1 arrest and recovery. However, the C. elegans genome encodes 40 insulin-like peptides (ILPs), and it is unknown which peptides participate in nutritional control of L1 arrest and recovery. Work in other contexts has identified putative receptor agonists and antagonists, but the extent of specificity versus redundancy is unclear beyond this distinction.
We measured mRNA expression dynamics with high temporal resolution for all 40 insulin-like genes during entry into and recovery from L1 arrest. Nutrient availability influences expression of the majority of insulin-like genes, with variable dynamics suggesting complex regulation. We identified 13 candidate agonists and 8 candidate antagonists based on expression in response to nutrient availability. We selected ten candidate agonists (daf-28, ins-3, ins-4, ins-5, ins-6, ins-7, ins-9, ins-26, ins-33 and ins-35) for further characterization in L1 stage larvae. We used destabilized reporter genes to determine spatial expression patterns. Expression of candidate agonists was largely overlapping in L1 stage larvae, suggesting a role of the intestine, chemosensory neurons ASI and ASJ, and the interneuron PVT in systemic control of L1 development. Transcriptional regulation of candidate agonists was most significant in the intestine, as if nutrient uptake was a more important influence on transcription than sensory perception. Scanning in the 5' upstream promoter region of these 40 ILPs, We found that transcription factor PQM-1 and GATA putative binding sites are depleted in the promoter region of antagonists. A novel motif was also found to be over-represented in ILPs.
Phenotypic analysis of single and compound deletion mutants did not reveal effects on L1 recovery/developmental dynamics, though simultaneous disruption of ins-4 and daf-28 extended survival of L1 arrest without enhancing thermal tolerance, while overexpression of ins-4, ins-6 or daf-28 shortened L1 survival. Simultaneous disruption of several ILPs showed a temperature independent, transient dauer phenotype. These results revealed the relative redundancy and specificity among agonistic ILPs.
TGF- β and steroid hormone (SH) signaling have been reported to control the dauer formation along with IIS. Our preliminary results suggest they may also mediate the IIS control of L1 arrest and recovery, as the expression of several key components of TGF-β and SH signaling pathway genes are negatively regulated by DAF-16, and loss-of-function of these genes partially represses daf-16 null phenotype in L1 arrest, and causes a retardation in L1 development.
In summary, my dissertation study focused on the IIS, characterized the dynamics and sites of ILPs expression in response to nutrient availability, revealed the function of specific agonistic ILPs in L1 arrest, and suggested potential cross-regulation among IIS, TGF-β signaling and SH signaling in controlling L1 arrest and recovery. These findings provide insights into how post-embryonic development is governed by insulin-like signaling and nutrient availability.
Resumo:
It is widely appreciated that larvae of the nematode Caenorhabditis elegans arrest development by forming dauer larvae in response to multiple unfavorable environmental conditions. C. elegans larvae can also reversibly arrest development earlier, during the first larval stage (L1), in response to starvation. "L1 arrest" (also known as "L1 diapause") occurs without morphological modification but is accompanied by increased stress resistance. Caloric restriction and periodic fasting can extend adult lifespan, and developmental models are critical to understanding how the animal is buffered from fluctuations in nutrient availability, impacting lifespan. L1 arrest provides an opportunity to study nutritional control of development. Given its relevance to aging, diabetes, obesity and cancer, interest in L1 arrest is increasing, and signaling pathways and gene regulatory mechanisms controlling arrest and recovery have been characterized. Insulin-like signaling is a critical regulator, and it is modified by and acts through microRNAs. DAF-18/PTEN, AMP-activated kinase and fatty acid biosynthesis are also involved. The nervous system, epidermis, and intestine contribute systemically to regulation of arrest, but cell-autonomous signaling likely contributes to regulation in the germline. A relatively small number of genes affecting starvation survival during L1 arrest are known, and many of them also affect adult lifespan, reflecting a common genetic basis ripe for exploration. mRNA expression is well characterized during arrest, recovery, and normal L1 development, providing a metazoan model for nutritional control of gene expression. In particular, post-recruitment regulation of RNA polymerase II is under nutritional control, potentially contributing to a rapid and coordinated response to feeding. The phenomenology of L1 arrest will be reviewed, as well as regulation of developmental arrest and starvation survival by various signaling pathways and gene regulatory mechanisms.