920 resultados para Numerical Operator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The object of this thesis is to formulate a basic commutative difference operator theory for functions defined on a basic sequence, and a bibasic commutative difference operator theory for functions defined on a bibasic sequence of points, which can be applied to the solution of basic and bibasic difference equations. in this thesis a brief survey of the work done in this field in the classical case, as well as a review of the development of q~difference equations, q—analytic function theory, bibasic analytic function theory, bianalytic function theory, discrete pseudoanalytic function theory and finally a summary of results of this thesis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tsunamis are water waves generated by a sudden vertical displacement of the water surface. They are waves generated in the ocean by the disturbance associated with seismic activity, under sea volcanic eruptions, submarine landslides, nuclear explosion or meteorite impacts with the ocean. These waves are generated in the ocean and travel into coastal bays, gulfs, estuaries and rivers. These waves travel as gravity waves with a velocity dependent on water depth. The term tsunami is Japanese and means harbour (tsu) and wave (nami). It has been named so because such waves often develop resonant phenomena in harbours after offshore earthquakes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The motion instability is an important issue that occurs during the operation of towed underwater vehicles (TUV), which considerably affects the accuracy of high precision acoustic instrumentations housed inside the same. Out of the various parameters responsible for this, the disturbances from the tow-ship are the most significant one. The present study focus on the motion dynamics of an underwater towing system with ship induced disturbances as the input. The study focus on an innovative system called two-part towing. The methodology involves numerical modeling of the tow system, which consists of modeling of the tow-cables and vehicles formulation. Previous study in this direction used a segmental approach for the modeling of the cable. Even though, the model was successful in predicting the heave response of the tow-body, instabilities were observed in the numerical solution. The present study devises a simple approach called lumped mass spring model (LMSM) for the cable formulation. In this work, the traditional LMSM has been modified in two ways. First, by implementing advanced time integration procedures and secondly, use of a modified beam model which uses only translational degrees of freedoms for solving beam equation. A number of time integration procedures, such as Euler, Houbolt, Newmark and HHT-α were implemented in the traditional LMSM and the strength and weakness of each scheme were numerically estimated. In most of the previous studies, hydrodynamic forces acting on the tow-system such as drag and lift etc. are approximated as analytical expression of velocities. This approach restricts these models to use simple cylindrical shaped towed bodies and may not be applicable modern tow systems which are diversed in shape and complexity. Hence, this particular study, hydrodynamic parameters such as drag and lift of the tow-system are estimated using CFD techniques. To achieve this, a RANS based CFD code has been developed. Further, a new convection interpolation scheme for CFD simulation, called BNCUS, which is blend of cell based and node based formulation, was proposed in the study and numerically tested. To account for the fact that simulation takes considerable time in solving fluid dynamic equations, a dedicated parallel computing setup has been developed. Two types of computational parallelisms are explored in the current study, viz; the model for shared memory processors and distributed memory processors. In the present study, shared memory model was used for structural dynamic analysis of towing system, distributed memory one was devised in solving fluid dynamic equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biometrics has become important in security applications. In comparison with many other biometric features, iris recognition has very high recognition accuracy because it depends on iris which is located in a place that still stable throughout human life and the probability to find two identical iris's is close to zero. The identification system consists of several stages including segmentation stage which is the most serious and critical one. The current segmentation methods still have limitation in localizing the iris due to circular shape consideration of the pupil. In this research, Daugman method is done to investigate the segmentation techniques. Eyelid detection is another step that has been included in this study as a part of segmentation stage to localize the iris accurately and remove unwanted area that might be included. The obtained iris region is encoded using haar wavelets to construct the iris code, which contains the most discriminating feature in the iris pattern. Hamming distance is used for comparison of iris templates in the recognition stage. The dataset which is used for the study is UBIRIS database. A comparative study of different edge detector operator is performed. It is observed that canny operator is best suited to extract most of the edges to generate the iris code for comparison. Recognition rate of 89% and rejection rate of 95% is achieved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article surveys the classical orthogonal polynomial systems of the Hahn class, which are solutions of second-order differential, difference or q-difference equations. Orthogonal families satisfy three-term recurrence equations. Example applications of an algorithm to determine whether a three-term recurrence equation has solutions in the Hahn class - implemented in the computer algebra system Maple - are given. Modifications of these families, in particular associated orthogonal systems, satisfy fourth-order operator equations. A factorization of these equations leads to a solution basis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ausgangspunkt der Dissertation ist ein von V. Maz'ya entwickeltes Verfahren, eine gegebene Funktion f : Rn ! R durch eine Linearkombination fh radialer glatter exponentiell fallender Basisfunktionen zu approximieren, die im Gegensatz zu den Splines lediglich eine näherungsweise Zerlegung der Eins bilden und somit ein für h ! 0 nicht konvergentes Verfahren definieren. Dieses Verfahren wurde unter dem Namen Approximate Approximations bekannt. Es zeigt sich jedoch, dass diese fehlende Konvergenz für die Praxis nicht relevant ist, da der Fehler zwischen f und der Approximation fh über gewisse Parameter unterhalb der Maschinengenauigkeit heutiger Rechner eingestellt werden kann. Darüber hinaus besitzt das Verfahren große Vorteile bei der numerischen Lösung von Cauchy-Problemen der Form Lu = f mit einem geeigneten linearen partiellen Differentialoperator L im Rn. Approximiert man die rechte Seite f durch fh, so lassen sich in vielen Fällen explizite Formeln für die entsprechenden approximativen Volumenpotentiale uh angeben, die nur noch eine eindimensionale Integration (z.B. die Errorfunktion) enthalten. Zur numerischen Lösung von Randwertproblemen ist das von Maz'ya entwickelte Verfahren bisher noch nicht genutzt worden, mit Ausnahme heuristischer bzw. experimenteller Betrachtungen zur sogenannten Randpunktmethode. Hier setzt die Dissertation ein. Auf der Grundlage radialer Basisfunktionen wird ein neues Approximationsverfahren entwickelt, welches die Vorzüge der von Maz'ya für Cauchy-Probleme entwickelten Methode auf die numerische Lösung von Randwertproblemen überträgt. Dabei werden stellvertretend das innere Dirichlet-Problem für die Laplace-Gleichung und für die Stokes-Gleichungen im R2 behandelt, wobei für jeden der einzelnen Approximationsschritte Konvergenzuntersuchungen durchgeführt und Fehlerabschätzungen angegeben werden.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a first order implicit time stepping procedure (Euler scheme) for the non-stationary Stokes equations in smoothly bounded domains of R3. Using energy estimates we can prove optimal convergence properties in the Sobolev spaces Hm(G) (m = 0;1;2) uniformly in time, provided that the solution of the Stokes equations has a certain degree of regularity. For the solution of the resulting Stokes resolvent boundary value problems we use a representation in form of hydrodynamical volume and boundary layer potentials, where the unknown source densities of the latter can be determined from uniquely solvable boundary integral equations’ systems. For the numerical computation of the potentials and the solution of the boundary integral equations a boundary element method of collocation type is used. Some simulations of a model problem are carried out and illustrate the efficiency of the method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate for very general cases the multiplet and fine structure splitting of muonelectron atoms arising from the coupling of the electron and muon angular momenta, including the effect of the Breit operator plus the electron state-dependent screening. Although many conditions have to be fulfilled simultaneously to observe these effeets, it should be possible to measure them in the 6h- 5g muonic transition in the Sn region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fully relativistic four-component Dirac-Fock-Slater program for diatomics, with numerically given AO's as basis functions is presented. We discuss the problem of the errors due to the finite basis-set, and due to the influence of the negative energy solutions of the Dirac Hamiltonian. The negative continuum contributions are found to be very small.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of nonlinear schemes like dual time stepping as preconditioners in matrix-free Newton-Krylov-solvers is considered and analyzed. We provide a novel formulation of the left preconditioned operator that says it is in fact linear in the matrix-free sense, but changes the Newton scheme. This allows to get some insight in the convergence properties of these schemes which are demonstrated through numerical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While most data analysis and decision support tools use numerical aspects of the data, Conceptual Information Systems focus on their conceptual structure. This paper discusses how both approaches can be combined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider numerical methods for the compressible time dependent Navier-Stokes equations, discussing the spatial discretization by Finite Volume and Discontinuous Galerkin methods, the time integration by time adaptive implicit Runge-Kutta and Rosenbrock methods and the solution of the appearing nonlinear and linear equations systems by preconditioned Jacobian-Free Newton-Krylov, as well as Multigrid methods. As applications, thermal Fluid structure interaction and other unsteady flow problems are considered. The text is aimed at both mathematicians and engineers.