943 resultados para Novel fungal species


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We evaluated the activity of antifungals alone or in combination against Aspergillus fumigatus and Aspergillus terreus by real-time measurement of fungal growth-related heat production. Amphotericin B, voriconazole, caspofungin, and anidulafungin were tested alone or in combination. Heat production was measured in Sabouraud dextrose broth containing 10(5)Aspergillus conidia/mL for 48 h at 37 °C. Antifungal activity was evaluated by measuring the heat detection time relative to the growth control. Against A. fumigatus, the voriconazole-echinocandin combination demonstrated longer heat detection time than each antifungal alone. Against A. terreus, the combination amphotericin B-echinocandin prolonged the heat detection time, compared to each antifungal alone. In contrast, the echinocandin-voriconazole combination did not increase the heat detection time, compared to voriconazole alone. None of the antifungal combinations decreased the heat detection time compared to the antifungals alone (e.g. antagonism was not observed). Microcalorimetry has the potential for real-time evaluation of antifungal combinations against Aspergillus spp.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The opportunistic ubiquitous pathogen Pseudomonas aeruginosa strain PAOl is a versatile Gram-negative bacterium that has the extraordinary capacity to colonize a wide diversity of ecological niches and to cause severe and persistent infections in humans. To ensure an optimal coordination of the genes involved in nutrient utilization, this bacterium uses the NtrB/C and/or the CbrA/B two-component systems, to sense nutrients availability and to regulate in consequence the expression of genes involved in their uptake and catabolism. NtrB/C is specialized in nitrogen utilization, while the CbrA/B system is involved in both carbon and nitrogen utilization and both systems activate their target genes expression in concert with the alternative sigma factor RpoN. Moreover, the NtrB/C and CbrA/B two- component systems regulate the secondary metabolism of the bacterium, such as the production of virulence factors. In addition to the fine-tuning transcriptional regulation, P. aeruginosa can rapidly modulate its metabolism using small non-coding regulatory RNAs (sRNAs), which regulate gene expression at the post-transcriptional level by diverse and sophisticated mechanisms and contribute to the fast physiological adaptability of this bacterium. In our search for novel RpoN-dependent sRNAs modulating the nutritional adaptation of P. aeruginosa PAOl, we discovered NrsZ (Nitrogen regulated sRNA), a novel RpoN-dependent sRNA that is induced under nitrogen starvation by the NtrB/C two-component system. NrsZ has a unique architecture, formed of three similar stem-loop structures (SL I, II and II) separated by variant spacer sequences. Moreover, this sRNA is processed in short individual stem-loop molecules, by internal cleavage involving the endoribonuclease RNAse E. Concerning NrsZ functions in P. aeruginosa PAOl, this sRNA was shown to trigger the swarming motility and the rhamnolipid biosurfactants production. This regulation is due to the NrsZ-mediated activation of rhlA expression, a gene encoding for an enzyme essential for swarming motility and rhamnolipids production. Interestingly, the SL I structure of NrsZ ensures its regulatory function on rhlA expression, suggesting that the similar SLs are the functional units of this modular sRNA. However, the regulatory mechanism of action of NrsZ on rhlA expression activation remains unclear and is currently being investigated. Additionally, the NrsZ regulatory network was investigated by a transcriptome analysis, suggesting that numerous genes involved in both primary and secondary metabolism are regulated by this sRNA. To emphasize the importance of NrsZ, we investigated its conservation in other Pseudomonas species and demonstrated that NrsZ is conserved and expressed under nitrogen limitation in Pseudomonas protegens Pf-5, Pseudomonas putida KT2442, Pseudomonas entomophila L48 and Pseudomonas syringae pv. tomato DC3000, strains having different ecological features, suggesting an important role of NrsZ in the adaptation of Pseudomonads to nitrogen starvation. Interestingly the architecture of the different NrsZ homologs is similarly composed by SL structures and variant spacer sequences. However, the number of SL repetitions is not identical, and one to six SLs were predicted on the different NrsZ homologs. Moreover, NrsZ is processed in short molecules in all the strains, similarly to what was previously observed in P. aeruginosa PAOl, and the heterologous expression of the NrsZ homologs restored rhlA expression, swarming motility and rhamnolipids production in the P. aeruginosa NrsZ mutant. In many aspects, NrsZ is an atypical sRNA in the bacterial panorama. To our knowledge, NrsZ is the first described sRNA induced by the NtrB/C. Moreover, its unique modular architecture and its processing in similar short SL molecules suggest that NrsZ belongs to a novel family of bacterial sRNAs. -- L'agent pathogène opportuniste et ubiquitaire Pseudomonas aeruginosa souche PAOl est une bactérie Gram négative versatile ayant l'extraordinaire capacité de coloniser différentes niches écologiques et de causer des infections sévères et persistantes chez l'être humain. Afin d'assurer une coordination optimale des gènes impliqués dans l'utilisation de différents nutriments, cette bactérie se sert de systèmes à deux composants tel que NtrB/C et CbrA/B afin de détecter la disponibilité des ressources nutritives, puis de réguler en conséquence l'expression des gènes impliqués dans leur importation et leur catabolisme. Le système NtrB/C régule l'utilisation des sources d'azote alors que le système CbrA/B est impliqué à la fois dans l'utilisation des sources de carbone et d'azote. Ces deux systèmes activent l'expression de leurs gènes-cibles de concert avec le facteur sigma alternatif RpoN. En outre, NtrB/C et CbrA/B régulent aussi le métabolisme secondaire, contrôlant notamment la production d'importants facteurs de virulence. En plus de toutes ces régulations génétiques fines ayant lieu au niveau transcriptionnel, P. aeruginosa est aussi capable de moduler son métabolisme en se servant de petits ARNs régulateurs non-codants (ARNncs), qui régulent l'expression génétique à un niveau post- transcriptionnel par divers mécanismes sophistiqués et contribuent à rendre particulièrement rapide l'adaptation physiologique de cette bactérie. Au cours de nos recherches sur de nouveaux ARNncs dépendant du facteur sigma RpoN et impliqués dans l'adaptation nutritionnelle de P. aeruginosa PAOl, nous avons découvert NrsZ (Nitrogen regulated sRNA), un ARNnc induit par la cascade NtrB/C-RpoN en condition de carence en azote. NrsZ a une architecture unique, composée de trois structures en tige- boucle (TB I, II et III) hautement similaires et séparées par des « espaceurs » ayant des séquences variables. De plus, cet ARNnc est clivé en petits fragments correspondant au trois molécules en tige-boucle, par un processus de clivage interne impliquant l'endoribonucléase RNase E. Concernant les fonctions de NrsZ chez P. aeruginosa PAOl, cet ARNnc est capable d'induire la motilité de type « swarming » et la production de biosurfactants, nommés rhamnolipides. Cette régulation est due à l'activation par NrsZ de l'expression de rhlA, un gène essentiel pour la motilité de type swarming et pour la production de rhamnolipides. Étonnamment, la structure TB I est capable d'assurer à elle seule la fonction régulatrice de NrsZ sur l'expression de rhlA, suggérant que ces molécules TBs sont les unités fonctionnelles de cet ARNnc modulaire. Cependant, le mécanisme moléculaire par lequel NrsZ active l'expression de rhlA demeure à ce jour incertain et est actuellement à l'étude. En plus, le réseau de régulations médiées par NrsZ a été étudié par une analyse de transcriptome qui a indiqué que de nombreux gènes impliqués dans le métabolisme primaire ou secondaire seraient régulés par NrsZ. Pour accentuer l'importance de NrsZ, nous avons étudié sa conservation dans d'autres espèces de Pseudomonas. Ainsi, nous avons démontré que NrsZ est conservé et exprimé en situation de carence d'azote par les souches Pseudomonas protegens Pf-5, Pseudomonas putida KT2442, Pseudomonas entomophila L48, Pseudomonas syringae pv. tomato DC3000, quatre espèces ayant des caractéristiques écologiques très différentes, suggérant que NrsZ joue un rôle important dans l'adaptation du genre Pseudomonas envers la carence en azote. Chez toutes les souches étudiées, les différents homologues de NrsZ présentent une architecture similaire faite de TBs conservées et d'espaceurs. Cependant, le nombre de TBs n'est pas identique et peut varier de une à six copies selon la souche. Les différentes versions de NrsZ sont clivées en petites molécules dans ces quatre souches, comme il a été observé chez P. aeruginosa PAOl. De plus, l'expression hétérologue des différentes variantes de NrsZ est capable de restaurer l'expression de rhlA, la motilité swarming et la production de rhamnolipides dans une souche de P. aeruginosa dont nrsZ a été inactivé. Par bien des aspects, NrsZ est un ARNnc atypique dans le monde bactérien. À notre connaissance, NrsZ est le premier ARNnc décrit comme étant régulé par le système NtrB/C. De plus, son unique architecture modulaire et son clivage en petites molécules similaires suggèrent que NrsZ appartient à une nouvelle famille d'ARNncs bactériens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: Sequencing and annotation of the genome of Aspergillus fumigatus has dramatically changed our knowledge about the proteins potentially encoded by the fungus. Own analysis have resulted in at least 47 of them contain a signal for secretion. Among those list we want to characterize those enzymes that may have impact on fungal growth outside and particularly inside the host. We thereby want to learn more about their function in general and to identify possible novel drug targets suited to combat invasive aspergillosis. Methods: Four groups of secreted proteases have been chosen for further analysis: 1 Serine-carboxyl proteases (sedolisins). Four of them were expressed in yeast and partly in bacteria. Substrate-specificity studies and kinetics as well as protein characterization of the yeast derived proteases were performed according to standard methods. Enzyme specific polyclonal antibodies were raised in rabbits using the peptides expressed in bacteria. Expression of proteases in A. fumigatus was investigated with these antibodies and gene knockout mutants for each enzyme as a control. All the following mentioned proteases will be investigated accordingly. 2 Two metalloproteases from the M12-family, ADAM-A and ADAM-B. Both proteases are likely membrane associated and may have inherent sheddase function as their counterparts in mammals. 3 One metalloprotease of the M43 family. An orthologue of this protease in Coccidioides posadasii is known to posses immunomodulating activities. 4 One putative endoprotease of the S28-family. An orthologue in Aspergillus niger is known to digest proline-rich proteins. In A. fumigatus this enzyme may facilitate invasion through proline-rich proteins like collagen. Results: All sedolisins expressed in yeast were proteolytically active: Three of them were characterized as tripeptidyl-peptidases whereas one enzyme is an endoprotease. Corresponding knockout mutants did not reveal a specific phenotype. Expression and investigations on all above mentioned proteases as well as generation of corresponding knockout mutants and double knockout mutants for the ADAMs, respectively, is underway. Promising candidates will be investigated in animal studies for reduced virulence. Conclusions : The real existence of so far hypothetical proteases predicted by the genome project was already demonstrated for the sedolisins by a reverse genetic approach (from gene to protein). With the aim of improving basic knowledge on function of other proteases potentially crucial for fungal growth and thus for pathogenesis, other hypothetical enzymes will be investigated. Those enzymes may turn out to be ideal drug targets for antimycotic chemotherapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distribution of plants along environmental gradients is constrained by abiotic and biotic factors. Cumulative evidence attests of the impact of biotic factors on plant distributions, but only few studies discuss the role of belowground communities. Soil fungi, in particular, are thought to play an important role in how plant species assemble locally into communities. We first review existing evidence, and then test the effect of the number of soil fungal operational taxonomic units (OTUs) on plant species distributions using a recently collected dataset of plant and metagenomic information on soil fungi in the Western Swiss Alps. Using species distribution models (SDMs), we investigated whether the distribution of individual plant species is correlated to the number of OTUs of two important soil fungal classes known to interact with plants: the Glomeromycetes, that are obligatory symbionts of plants, and the Agaricomycetes, that may be facultative plant symbionts, pathogens, or wood decayers. We show that including the fungal richness information in the models of plant species distributions improves predictive accuracy. Number of fungal OTUs is especially correlated to the distribution of high elevation plant species. We suggest that high elevation soil show greater variation in fungal assemblages that may in turn impact plant turnover among communities. We finally discuss how to move beyond correlative analyses, through the design of field experiments manipulating plant and fungal communities along environmental gradients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Management systems involving crop rotation, ground cover species and reduced soil tillage can improve the soil physical and biological properties and reduce degradation. The primary purpose of this study was to assess the effect of various crops grown during the sugarcane fallow period on the production of glomalin and arbuscular mycorrhizal fungi in two Latosols, as well as their influence on soil aggregation. The experiment was conducted on an eutroferric Red Latosol with high-clay texture (680 g clay kg-1) and an acric Red Latosol with clayey texture (440 g kg-1 clay) in Jaboticabal (São Paulo State, Brazil). A randomized block design involving five blocks and four crops [soybean (S), soybean/fallow/soybean (SFS), soybean/millet/soybean (SMS) and soybean/sunn hemp/soybean (SHS)] was used to this end. Soil samples for analysis were collected in June 2011. No significant differences in total glomalin production were detected between the soils after the different crops. However, total external mycelium length was greater in the soils under SMS and SHS. Also, there were differences in easily extractable glomalin, total glomalin and aggregate stability, which were all greater in the eutroferric Red Latosol than in the acric Red Latosol. None of the cover crops planted in the fallow period of sugarcane improved aggregate stability in either Latosol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Site-specific proteolytic processing plays important roles in the regulation of cellular activities. The histone modification activity of the human trithorax group mixed-lineage leukemia (MLL) protein and the cell cycle regulatory activity of the cell proliferation factor herpes simplex virus host cell factor 1 (HCF-1) are stimulated by cleavage of precursors that generates stable heterodimeric complexes. MLL is processed by a protease called taspase 1, whereas the precise mechanisms of HCF-1 maturation are unclear, although they are known to depend on a series of sequence repeats called HCF-1(PRO) repeats. We demonstrate here that the Drosophila homologs of MLL and HCF-1, called Trithorax and dHCF, are both cleaved by Drosophila taspase 1. Although highly related, the human and Drosophila taspase 1 proteins display cognate species specificity. Thus, human taspase 1 preferentially cleaves MLL and Drosophila taspase 1 preferentially cleaves Trithorax, consistent with coevolution of taspase 1 and MLL/Trithorax proteins. HCF proteins display even greater species-specific divergence in processing: whereas dHCF is cleaved by the Drosophila taspase 1, human and mouse HCF-1 maturation is taspase 1 independent. Instead, human and Xenopus HCF-1PRO repeats are cleaved in vitro by a human proteolytic activity with novel properties. Thus, from insects to humans, HCF proteins have conserved proteolytic maturation but evolved different mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adenoviruses of primates include human (HAdV) and simian (SAdV) isolates classified into 8 species (Human Adenovirus A to G, and Simian Adenovirus A). In this study, a novel adenovirus was isolated from a colony of cynomolgus macaques (Macaca fascicularis) and subcultured in VERO cells. Its complete genome was purified and a region encompassing the hexon gene, the protease gene, the DNA binding protein (DBP) and the 100 kDa protein was amplified by PCR and sequenced by primer walking. Sequence analysis of these four genes showed that the new isolate had 80% identity to other primate adenoviruses and lacked recombination events. The study of the evolutionary relationships of this new monkey AdV based on the combined sequences of the four genes supported a close relationship to SAdV-3 and SAdV-6, lineages isolated from Rhesus monkeys. The clade formed by these three types is separated from the remaining clades and establishes a novel branch that is related to species HAdV-A, F and G. However, the genetic distance corresponding to the newly isolated monkey AdV considerably differs from these as to belong to a new, not yet established species. Results presented here widen our knowledge on SAdV and represents an important contribution to the understanding of the evolutionary history of primate adenoviruses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RESUME Pour favoriser sa croissance en condition limitante de fer, le pathogène opportunistePseudomonas aeruginosa PAO1 sécrète un sidérophore nommé pyochéline. Celui-ci estproduit par un mécanisme de "thiotemplate", à partir de l'acide salicylique et de deuxmolécules de cystéine, et existe sous forme d'une paire de diastéréoisomèresinterconvertibles: pyochéline I (4'R, 2?R, 4?R) et pyochéline II (4'R, 2?S, 4?R). Deprécédentes études ont montré que la pyochéline induit l'expression de ses propres gènes debiosynthèse via le régulateur transcriptionnel PchR qui appartient à la famille AraC/XylS. Lapyochéline est donc non seulement un sidérophore mais également une molécule signale.Nous avons découvert que Pseudomonas fluorescens CHA0 sécrète une pyochélinestéréochimiquement distincte de celle produite par P. aeruginosa. Ce nouveau sidérophorefavorise la croissance de P. fluorescens en condition limitante en fer et induit l'expression deses propres gènes de biosynthèse. Cependant, cette molécule n'est pas reconnue commesidérophore ou molécule signale par P. aeruginosa. Réciproquement, la pyochéline estincapable de stimuler la croissance et la signalisation chez P. fluorescens. La structure dusiderophore de P. fluorescens CHA0 a été déterminée comme étant un antipode optique de lapyochéline et nommé énantio-pyochéline.La stéréospécificité de l'induction des gènes de biosynthèse de la pyochéline/énantiopyochélineest basée sur la stéréospécificité des protéines PchR de P. aeruginosa et P.fluorescens envers leur sidérophores-ligands respectifs. PchR est fonctionnel chez l'espècehétérologue, mais uniquement en présence de son propre ligand. Les récepteurs spécifiquesdes sidérophores pyochéline/enantio-pyochéline ne sont pas indispensables à la signalisationmais sont essentiels à l'incorporation du fer et à la croissance en carence de fer. Laconstruction de protéines hybrides et tronquées a révélé que le domaine N-terminal de PchRest l'élément déterminant pour la spécificité de la protéine vis-à-vis de son ligand. SUMMARY : The siderophore pyochelin is produced by the opportunistic pathogen Pseudomonas aeruginosa PAO1 and promotes growth under iron limitation. Pyochelin is made by a thiotemplate mechanism from salicylate and two molecules of cysteine and exists as a pair of interconvertible diastereoisomers: pyochelin I (4'R, 2"R, 4"R) and pyochelin II (4'R, 2"S, 4"R). Pyochelin induces the expression of its biosynthesis and uptake genes via the transcriptional AraC/Xy1S family regulator PchR in a process termed pyochelin signaling. Pseudomonas fluorescens CHAO was found to make a stereochemically distinct pyochelin to P. aeruginosa. This siderophore promoted the growth of P. fluorescens under iron limitation and induced the expression of its biosynthesis genes but was not recognised as a siderophore or signaling molecule by P. aeruginosa. Reciprocally, pyochelin was unable to promote growth or signaling in P. fluorescens. The structure of the P. fluorescens CHAO siderophore was determined and found to be enantio-pyochelin, the optical antipode of pyochelin. Stereospecificity in induction of pyochelin/enantio-pyochelin biosynthesis genes was found to be due to stereospecificity of the homologous PchR proteins of P. aeruginosa and P. fluorescens towards their respective siderophore ligands. PchR was able to function in the heterologous species, but only if supplied with its native ligand. The pyochelin/enantiopyochelin receptors were not essential for signaling although both receptors are essential for iron uptake and growth under iron limitation. Construction of hybrid and truncated PchR proteins revealed that the N-terminal domain of PchR is responsible for siderophore recognition/stereospecificity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adenoviruses of primates include human (HAdV) and simian (SAdV) isolates classified into 8 species (Human Adenovirus A to G, and Simian Adenovirus A). In this study, a novel adenovirus was isolated from a colony of cynomolgus macaques (Macaca fascicularis) and subcultured in VERO cells. Its complete genome was purified and a region encompassing the hexon gene, the protease gene, the DNA binding protein (DBP) and the 100 kDa protein was amplified by PCR and sequenced by primer walking. Sequence analysis of these four genes showed that the new isolate had 80% identity to other primate adenoviruses and lacked recombination events. The study of the evolutionary relationships of this new monkey AdV based on the combined sequences of the four genes supported a close relationship to SAdV-3 and SAdV-6, lineages isolated from Rhesus monkeys. The clade formed by these three types is separated from the remaining clades and establishes a novel branch that is related to species HAdV-A, F and G. However, the genetic distance corresponding to the newly isolated monkey AdV considerably differs from these as to belong to a new, not yet established species. Results presented here widen our knowledge on SAdV and represents an important contribution to the understanding of the evolutionary history of primate adenoviruses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pneumocystis jirovecii is a fungus causing severe pneumonia in immuno-compromised patients. Progress in understanding its pathogenicity and epidemiology has been hampered by the lack of a long-term in vitro culture method. Obligate parasitism of this pathogen has been suggested on the basis of various features but remains controversial. We analysed the 7.0 Mb draft genome sequence of the closely related species Pneumocystis carinii infecting rats, which is a well established experimental model of the disease. We predicted 8'085 (redundant) peptides and 14.9% of them were mapped onto the KEGG biochemical pathways. The proteome of the closely related yeast Schizosaccharomyces pombe was used as a control for the annotation procedure (4'974 genes, 14.1% mapped). About two thirds of the mapped peptides of each organism (65.7% and 73.2%, respectively) corresponded to crucial enzymes for the basal metabolism and standard cellular processes. However, the proportion of P. carinii genes relative to those of S. pombe was significantly smaller for the "amino acid metabolism" category of pathways than for all other categories taken together (40 versus 114 against 278 versus 427, P<0.002). Importantly, we identified in P. carinii only 2 enzymes specifically dedicated to the synthesis of the 20 standard amino acids. By contrast all the 54 enzymes dedicated to this synthesis reported in the KEGG atlas for S. pombe were detected upon reannotation of S. pombe proteome (2 versus 54 against 278 versus 427, P<0.0001). This finding strongly suggests that species of the genus Pneumocystis are scavenging amino acids from their host's lung environment. Consequently, they would have no form able to live independently from another organism, and these parasites would be obligate in addition to being opportunistic. These findings have implications for the management of patients susceptible to P. jirovecii infection given that the only source of infection would be other humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evolution through natural selection suggests unnecessary genes are lost. We observed that the yeast Candida glabrata lost the gene encoding a phosphate-repressible acid phosphatase (PHO5) present in many yeasts including Saccharomyces cerevisiae. However, C. glabrata still had phosphate starvation-inducible phosphatase activity. Screening a C. glabrata genomic library, we identified CgPMU2, a member of a three-gene family that contains a phosphomutase-like domain. This small-scale gene duplication event could allow for sub- or neofunctionalization. On the basis of phylogenetic and biochemical characterizations, CgPMU2 has neofunctionalized to become a broad range, phosphate starvation-regulated acid phosphatase, which functionally replaces PHO5 in this pathogenic yeast. We determined that CgPmu2, unlike ScPho5, is not able to hydrolyze phytic acid (inositol hexakisphosphate). Phytic acid is present in fruits and seeds where S. cerevisiae grows, but is not abundant in mammalian tissues where C. glabrata grows. We demonstrated that C. glabrata is limited from an environment where phytic acid is the only source of phosphate. Our work suggests that during evolutionary time, the selection for the ancestral PHO5 was lost and that C. glabrata neofunctionalized a weak phosphatase to replace PHO5. Convergent evolution of a phosphate starvation-inducible acid phosphatase in C. glabrata relative to most yeast species provides an example of how small changes in signal transduction pathways can mediate genetic isolation and uncovers a potential speciation gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A leading hypothesis linking parasites to social evolution is that more genetically diverse social groups better resist parasites. Moreover, group diversity can encompass factors other than genetic variation that may also influence disease resistance. Here, we tested whether group diversity improved disease resistance in an ant species with natural variation in colony queen number. We formed experimental groups of workers and challenged them with the fungal parasite Metarhizium anisopliae. Workers originating from monogynous colonies (headed by a single queen and with low genetic diversity) had higher survival than workers originating from polygynous ones, both in uninfected groups and in groups challenged with M. anisopliae. However, an experimental increase of group diversity by mixing workers originating from monogynous colonies strongly increased the survival of workers challenged with M. anisopliae, whereas it tended to decrease their survival in absence of infection. This experiment suggests that group diversity, be it genetic or environmental, improves the mean resistance of group members to the fungal infection, probably through the sharing of physiological or behavioural defences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The feline immunodeficiency virus (FIV) targets activated CD4-positive helper T cells preferentially, inducing an AIDS-like immunodeficiency in its natural host species, the domestic cat. The primary receptor for FIV is CD134, a member of the tumor necrosis factor receptor superfamily, and all primary viral strains tested to date use CD134 for infection. We examined the expression of CD134 in the cat using a novel anti-feline CD134 monoclonal antibody (MAb), 7D6, and showed that as in rats and humans, CD134 expression is restricted tightly to CD4+, and not CD8+, T cells, consistent with the selective targeting of these cells by FIV. However, FIV is also macrophage tropic, and in chronic infection the viral tropism broadens to include B cells and CD8+ T cells. Using 7D6, we revealed CD134 expression on a B220-positive (B-cell) population and on cultured macrophages but not peripheral blood monocytes. Moreover, macrophage CD134 expression and FIV infection were enhanced by activation in response to bacterial lipopolysaccharide. Consistent with CD134 expression on human and murine T cells, feline CD134 was abundant on mitogen-stimulated CD4+ T cells, with weaker expression on CD8+ T cells, concordant with the expansion of FIV into CD8+ T cells with progression of the infection. The interaction between FIV and CD134 was probed using MAb 7D6 and soluble CD134 ligand (CD134L), revealing strain-specific differences in sensitivity to both 7D6 and CD134L. Infection with isolates such as PPR and B2542 was inhibited well by both 7D6 and CD134L, suggesting a lower affinity of interaction. In contrast, GL8, CPG, and NCSU were relatively refractory to inhibition by both 7D6 and CD134L and, accordingly, may have a higher-affinity interaction with CD134, permitting infection of cells where CD134 levels are limiting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arbuscular mycorrhizal symbioses occur between fungi and the majority of plant species. They are important for plant nutrition, plant growth, protection from pathogens, plant diversity, nutrient cycling, and ecosystem processes. A key goal in research is to understand the molecular basis of the establishment, regulation, and functioning of the symbiosis. However, lack of knowledge on the genetics of the fungal side of this association has hindered progress. Here, we show how several key, recently discovered processes concerning the genetics of arbuscular mycorrhizal fungi could be essential for ultimately understanding the molecular genetics of this important symbiosis with plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

More than 80 % of vascular plants in the world form symbioses with arbuscular mycorrhizal fungi (AMF). AMF supply plants with nutrients such as phosphate and nitrogen, and can also help the plants to take up water. Hence, the symbiosis can greatly influence the growth and the defence of plants. By modifying plant productivity and diversity, AMF are considered as keystone species in ecosystems, playing a role that ultimately affects many food webs. This is why mycorrhizal symbioses have been investigated for several decades by many research groups.¦However, a large part of the scientific research done on AMF symbiosis has focused on the interaction between one plant and one fungus. This situation is far from realistic, as in natural ecosystems, many different fungal strains and species are co-existing and interacting in a belowground network. The main goal of this PhD was to investigate first, the interaction occurring among different co-existing AMF depending on their genetic relatedness and second, the outcome of the interaction and their effects on associated species.¦We found that AMF genetic relatedness partly explains the interaction among AMF, and this was in agreement with theories made for completely different species. Briefly, we demonstrated that AMF isolates of the same species coexisted more easily when they were closely-related, whereas AMF from different species were more in competition in this case of high relatedness. We also demonstrated that coexistence and competition among AMF can mediate plant growth as well as herbivore behaviour, opening new insights in our understanding of AMF effects on ecosystem functioning.¦Overall, the results of the different experiments of this PhD highlight the necessity of using multiple AMF to understand their interactions. Even so, we demonstrated here that simple species richness is not enough to understand these interactions and genetic relatedness among the co-existing AMF is a parameter that must be taken into account.¦-¦Sur Terre, plus de 80 % des plantes vasculaires forment des symbioses avec des champignons endomycorhiziens à arbuscules (CEA). Ces CEA permettent aux plantes d'acquérir plus facilement des nutriments tels que des phosphates, des nitrates, ou simplement de l'eau. Ainsi, cette symbiose peut avoir un effet important à la fois sur la croissance mais aussi sur la défense des plantes. En modulant la productivité et la diversité des plantes, les CEA sont donc des espèces clefs dans l'écosystème. Leur présence peut avoir des répercussions sur l'ensemble des réseaux trophiques. C'est pourquoi de nombreuses équipes de recherches étudient ces symbioses mycorhizienes depuis plusieurs décennies.¦La plupart des études concernant ces symbioses se sont focalisées sur l'action d'une espèce de CEA sur une espèce de plante. Malheureusement, cette situation ne correspond pas à ce que l'on peut retrouver dans la nature, où de nombreuses souches et de nombreuses espèces de CEA coexistent et interagissent dans un réseau mycélien souterrain. Le principal but de cette thèse était d'étudier, premièrement les interactions entre les différent CEA en fonction de leur apparentement génétique, et deuxièmement, d'étudier l'effet de ces interactions fongiques sur l'écologie des espèces associées.¦Au cours des différentes expériences de cette thèse, nous avons démontré que l'apparentement génétique entre les CEA expliquait une part non négligeable de leurs interactions. En résumé, plus l'apparentement génétique entre des souches de CEA d'une même espèce sera grand, plus ces souches seront capables de coexister. En revanche, s'il s'agit d'espèces différentes de CEA, plus elles seront apparentées, plus la compétition sera grande entre elles. Nous avons également démontré que la coexistence et la compétition entre différents CEA peut modifier à la fois la croissance des plantes mais aussi le comportement de leur prédateurs, ce qui ouvre de nouvelles perspectives sur notre compréhension des effets des CEA dans le fonctionnement des écosystèmes.¦Globalement, les résultats de nos différentes expériences mettent en évidence la nécessité d'utiliser plusieurs souches ou espèces de CEA pour mieux comprendre leurs interactions. Quand bien même, nos expériences démontrent que le simple recensement du nombre d'espèces de CEA n'est pas suffisant pour comprendre les interactions et que l'apparentement génétique des CEA coexistants est un paramètre qui doit être pris en compte.