885 resultados para Nonlinear absorption


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we address the problem of consistently constructing Langevin equations to describe fluctuations in nonlinear systems. Detailed balance severely restricts the choice of the random force, but we prove that this property, together with the macroscopic knowledge of the system, is not enough to determine all the properties of the random force. If the cause of the fluctuations is weakly coupled to the fluctuating variable, then the statistical properties of the random force can be completely specified. For variables odd under time reversal, microscopic reversibility and weak coupling impose symmetry relations on the variable-dependent Onsager coefficients. We then analyze the fluctuations in two cases: Brownian motion in position space and an asymmetric diode, for which the analysis based in the master equation approach is known. We find that, to the order of validity of the Langevin equation proposed here, the phenomenological theory is in agreement with the results predicted by more microscopic models

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the considerable environmental importance of mercury (Hg), given its high toxicity and ability to contaminate large areas via atmospheric deposition, little is known about its activity in soils, especially tropical soils, in comparison with other heavy metals. This lack of information about Hg arises because analytical methods for determination of Hg are more laborious and expensive compared to methods for other heavy metals. The situation is even more precarious regarding speciation of Hg in soils since sequential extraction methods are also inefficient for this metal. The aim of this paper is to present a technique of thermal desorption associated with atomic absorption spectrometry, TDAAS, as an efficient tool for quantitative determination of Hg in soils. The method consists of the release of Hg by heating, followed by its quantification by atomic absorption spectrometry. It was developed by constructing calibration curves in different soil samples based on increasing volumes of standard Hg2+ solutions. Performance, accuracy, precision, and quantification and detection limit parameters were evaluated. No matrix interference was detected. Certified reference samples and comparison with a Direct Mercury Analyzer, DMA (another highly recognized technique), were used in validation of the method, which proved to be accurate and precise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxidation of solutions of glucose with methylene-blue as a catalyst in basic media can induce hydrodynamic overturning instabilities, termed chemoconvection in recognition of their similarity to convective instabilities. The phenomenon is due to gluconic acid, the marginally dense product of the reaction, which gradually builds an unstable density profile. Experiments indicate that dominant pattern wavenumbers initially increase before gradually decreasing or can even oscillate for long times. Here, we perform a weakly nonlinear analysis for an established model of the system with simple kinetics, and show that the resulting amplitude equation is analogous to that obtained in convection with insulating walls. We show that the amplitude description predicts that dominant pattern wavenumbers should decrease in the long term, but does not reproduce the aforementioned increasing wavenumber behavior in the initial stages of pattern development. We hypothesize that this is due to horizontally homogeneous steady states not being attained before pattern onset. We show that the behavior can be explained using a combination of pseudo-steady-state linear and steady-state weakly nonlinear theories. The results obtained are in qualitative agreement with the analysis of experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interfacial hydrodynamic instabilities arise in a range of chemical systems. One mechanism for instability is the occurrence of unstable density gradients due to the accumulation of reaction products. In this paper we conduct two-dimensional nonlinear numerical simulations for a member of this class of system: the methylene-blue¿glucose reaction. The result of these reactions is the oxidation of glucose to a relatively, but marginally, dense product, gluconic acid, that accumulates at oxygen permeable interfaces, such as the surface open to the atmosphere. The reaction is catalyzed by methylene-blue. We show that simulations help to disassemble the mechanisms responsible for the onset of instability and evolution of patterns, and we demonstrate that some of the results are remarkably consistent with experiments. We probe the impact of the upper oxygen boundary condition, for fixed flux, fixed concentration, or mixed boundary conditions, and find significant qualitative differences in solution behavior; structures either attract or repel one another depending on the boundary condition imposed. We suggest that measurement of the form of the boundary condition is possible via observation of oxygen penetration, and improved product yields may be obtained via proper control of boundary conditions in an engineering setting. We also investigate the dependence on parameters such as the Rayleigh number and depth. Finally, we find that pseudo-steady linear and weakly nonlinear techniques described elsewhere are useful tools for predicting the behavior of instabilities beyond their formal range of validity, as good agreement is obtained with the simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nonlinear calculation of the dynamics of transient pattern formation in the Fréedericksz transition is presented. A Gaussian decoupling is used to calculate the time dependence of the structure factor. The calculation confirms the range of validity of linear calculations argued in earlier work. In addition, it describes the decay of the transient pattern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: At 7 Tesla (T), conventional static field (B0 ) projection mapping techniques, e.g., FASTMAP, FASTESTMAP, lead to elevated specific absorption rates (SAR), requiring longer total acquisition times (TA). In this work, the series of adiabatic pulses needed for slab selection in FASTMAP is replaced by a single two-dimensional radiofrequency (2D-RF) pulse to minimize TA while ensuring equal shimming performance. METHODS: Spiral gradients and 2D-RF pulses were designed to excite thin slabs in the small tip angle regime. The corresponding selection profile was characterized in phantoms and in vivo. After optimization of the shimming protocol, the spectral linewidths obtained after 2D localized shimming were compared with conventional techniques and published values from (Emir et al NMR Biomed 2012;25:152-160) in six different brain regions. RESULTS: Results on healthy volunteers show no significant difference (P > 0.5) between the spectroscopic linewidths obtained with the adiabatic (TA = 4 min) and the new low-SAR and time-efficient FASTMAP sequence (TA = 42 s). The SAR can be reduced by three orders of magnitude and TA accelerated six times without impact on the shimming performances or quality of the resulting spectra. CONCLUSION: Multidimensional pulses can be used to minimize the RF energy and time spent for automated shimming using projection mapping at high field. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending the corresponding approaches to the regional scale represents a major, and as-of-yet largely unresolved, challenge. To address this problem, we have developed a downscaling procedure based on a non-linear Bayesian sequential simulation approach. The basic objective of this algorithm is to estimate the value of the sparsely sampled hydraulic conductivity at non-sampled locations based on its relation to the electrical conductivity, which is available throughout the model space. The in situ relationship between the hydraulic and electrical conductivities is described through a non-parametric multivariate kernel density function. This method is then applied to the stochastic integration of low-resolution, re- gional-scale electrical resistivity tomography (ERT) data in combination with high-resolution, local-scale downhole measurements of the hydraulic and electrical conductivities. Finally, the overall viability of this downscaling approach is tested and verified by performing and comparing flow and transport simulation through the original and the downscaled hydraulic conductivity fields. Our results indicate that the proposed procedure does indeed allow for obtaining remarkably faithful estimates of the regional-scale hydraulic conductivity structure and correspondingly reliable predictions of the transport characteristics over relatively long distances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reliable and objective assessment of chronic disease state has been and still is a very significant challenge in clinical medicine. An essential feature of human behavior related to the health status, the functional capacity, and the quality of life is the physical activity during daily life. A common way to assess physical activity is to measure the quantity of body movement. Since human activity is controlled by various factors both extrinsic and intrinsic to the body, quantitative parameters only provide a partial assessment and do not allow for a clear distinction between normal and abnormal activity. In this paper, we propose a methodology for the analysis of human activity pattern based on the definition of different physical activity time series with the appropriate analysis methods. The temporal pattern of postures, movements, and transitions between postures was quantified using fractal analysis and symbolic dynamics statistics. The derived nonlinear metrics were able to discriminate patterns of daily activity generated from healthy and chronic pain states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High available aluminium and low levels of calcium below the ploughed zone of the soil are limiting factors for agricultural sustainability in the Brazilian Cerrados (Savannahs). The mineral stresses compound with dry spells effect by preventing deep root growth of cultivated plants and causes yield instability. The mode of inheritance for grain yield and mineral absorption ratio of a diallel cross in soybeans [Glycine max (L.) Merrill] grown in high and low Al areas was identified. Differences among the genotypes for grain yield were more evident in the high Al, by grouping tolerant and non-tolerant genotypes for their respective arrays in the hybrids. A large proportion of genetic variance was additive for grain yield and mineral absorption ratio in both environments. High heritability values suggest that soybeans can be improved by crosses among Al-tolerant genotypes, using modified pedigree, early generation and recurrent selection schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aims of this study are to consider the experience of flow from a nonlinear dynamics perspective. The processes and temporal nature of intrinsic motivation and flow, would suggest that flow experiences fluctuate over time in a dynamical fashion. Thus it can be argued that the potential for chaos is strong. The sample was composed of 20 employees (both full and part time) recruited from a number of different organizations and work backgrounds. The Experience Sampling Method (ESM) was used for data collection. Once obtained the temporal series, they were subjected to various analyses proper to the com- plexity theory (Visual Recurrence Analysis and Surrogate Data Analysis). Results showed that in 80% of the cases, flow presented a chaotic dynamic, in that, flow experiences delineated a complex dynamic whose patterns of change were not easy to predict. Implications of the study, its limitations and future research are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The highway departments of all fifty states were contacted to find the extent of application of integral abutment bridges, to survey the different guidelines used for analysis and design of integral abutment bridges, and to assess the performance of such bridges through the years. The variation in design assumptions and length limitations among the various states in their approach to the use of integral abutments is discussed. The problems associated with lateral displacements at the abutment, and the solutions developed by the different states for most of the ill effects of abutment movements are summarized in the report. An algorithm based on a state-of-the-art nonlinear finite element procedure was developed and used to study piling stresses and pile-soil interaction in integral abutment bridges. The finite element idealization consists of beam-column elements with geometric and material nonlinearities for the pile and nonlinear springs for the soil. An idealized soil model (modified Ramberg-Osgood model) was introduced in this investigation to obtain the tangent stiffness of the nonlinear spring elements. Several numerical examples are presented in order to establish the reliability of the finite element model and the computer software developed. Three problems with analytical solutions were first solved and compared with theoretical solutions. A 40 ft H pile (HP 10 X 42) in six typical Iowa soils was then analyzed by first applying a horizontal displacement (to simulate bridge motion) and no rotation at the top and then applying a vertical load V incrementally until failure occurred. Based on the numerical results, the failure mechanisms were generalized to be of two types: (a) lateral type failure and (b) vertical type failure. It appears that most piles in Iowa soils (sand, soft clay and stiff clay) failed when the applied vertical load reached the ultimate soil frictional resistance (vertical type failure). In very stiff clays, however, the lateral type failure occurs before vertical type failure because the soil is sufficiently stiff to force a plastic hinge to form in the pile as the specified lateral displacement is applied. Preliminary results from this investigation showed that the vertical load-carrying capacity of H piles is not significantly affected by lateral displacements of 2 inches in soft clay, stiff clay, loose sand, medium sand and dense sand. However, in very stiff clay (average blow count of 50 from standard penetration tests), it was found that the vertical load carrying capacity of the H pile is reduced by about 50 percent for 2 inches of lateral displacement and by about 20 percent for lateral displacement of 1 inch. On the basis of the preliminary results of this investigation, the 265-feet length limitation in Iowa for integral abutment concrete bridges appears to be very conservative.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The highway departments of the states which use integral abutments in bridge design were contacted in order to study the extent of integral abutment use in skewed bridges and to survey the different guidelines used for analysis and design of integral abutments in skewed bridges. The variation in design assumptions and pile orientations among the various states in their approach to the use of integral abutments on skewed bridges is discussed. The problems associated with the treatment of the approach slab, backfill, and pile cap, and the reason for using different pile orientations are summarized in the report. An algorithm based on a state-of-the-art nonlinear finite element procedure previously developed by the authors was modified and used to study the influence of different factors on behavior of piles in integral abutment bridges. An idealized integral abutment was introduced by assuming that the pile is rigidly cast into the pile cap and that the approach slab offers no resistance to lateral thermal expansion. Passive soil and shear resistance of the cap are neglected in design. A 40-foot H pile (HP 10 X 42) in six typical Iowa soils was analyzed for fully restrained pile head and pinned pile head. According to numerical results, the maximum safe length for fully restrained pile head is one-half the maximum safe length for pinned pile head. If the pile head is partially restrained, the maximum safe length will lie between the two limits. The numerical results from an investigation of the effect of predrilled oversized holes indicate that if the length of the predrilled oversized hole is at least 4 feet below the ground, the vertical load-carrying capacity of the H pile is only reduced by 10 percent for 4 inches of lateral displacement in very stiff clay. With no predrilled oversized hole, the pile failed before the 4-inch lateral displacement was reached. Thus, the maximum safe lengths for integral abutment bridges may be increased by predrilling. Four different typical Iowa layered soils were selected and used in this investigation. In certain situations, compacted soil (> 50 blow count in standard penetration tests) is used as fill on top of natural soil. The numerical results showed that the critical conditions will depend on the length of the compacted soil. If the length of the compacted soil exceeds 4 feet, the failure mechanism for the pile is similar to one in a layer of very stiff clay. That is, the vertical load-carrying capacity of the H pile will be greatly reduced as the specified lateral displacement increases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhythmic activity plays a central role in neural computations and brain functions ranging from homeostasis to attention, as well as in neurological and neuropsychiatric disorders. Despite this pervasiveness, little is known about the mechanisms whereby the frequency and power of oscillatory activity are modulated, and how they reflect the inputs received by neurons. Numerous studies have reported input-dependent fluctuations in peak frequency and power (as well as couplings across these features). However, it remains unresolved what mediates these spectral shifts among neural populations. Extending previous findings regarding stochastic nonlinear systems and experimental observations, we provide analytical insights regarding oscillatory responses of neural populations to stimulation from either endogenous or exogenous origins. Using a deceptively simple yet sparse and randomly connected network of neurons, we show how spiking inputs can reliably modulate the peak frequency and power expressed by synchronous neural populations without any changes in circuitry. Our results reveal that a generic, non-nonlinear and input-induced mechanism can robustly mediate these spectral fluctuations, and thus provide a framework in which inputs to the neurons bidirectionally regulate both the frequency and power expressed by synchronous populations. Theoretical and computational analysis of the ensuing spectral fluctuations was found to reflect the underlying dynamics of the input stimuli driving the neurons. Our results provide insights regarding a generic mechanism supporting spectral transitions observed across cortical networks and spanning multiple frequency bands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lithium-induced nephrogenic diabetes insipidus (NDI) is accompanied by polyuria, downregulation of aquaporin 2 (AQP2), and cellular remodeling of the collecting duct (CD). The amiloride-sensitive epithelial sodium channel (ENaC) is a likely candidate for lithium entry. Here, we subjected transgenic mice lacking αENaC specifically in the CD (knockout [KO] mice) and littermate controls to chronic lithium treatment. In contrast to control mice, KO mice did not markedly increase their water intake. Furthermore, KO mice did not demonstrate the polyuria and reduction in urine osmolality induced by lithium treatment in the control mice. Lithium treatment reduced AQP2 protein levels in the cortex/outer medulla and inner medulla (IM) of control mice but only partially reduced AQP2 levels in the IM of KO mice. Furthermore, lithium induced expression of H(+)-ATPase in the IM of control mice but not KO mice. In conclusion, the absence of functional ENaC in the CD protects mice from lithium-induced NDI. These data support the hypothesis that ENaC-mediated lithium entry into the CD principal cells contributes to the pathogenesis of lithium-induced NDI.