942 resultados para Ni catalyst
Resumo:
The aim of this investigation is to study how Zr/Ti-PILC adsorbs metals. The physico-chemical proprieties of Zr/Ti-PILC have been optimized with pillarization processes and Cu(II), Ni(II) and Co(II) adsorption from aqueous solution has been carried out, with maximum adsorption values of 8.85, 8.30 and 7.78 x10-1 mmol g-1, respectively. The Langmuir, Freundlich and Temkin adsorption isotherm models have been applied to fit the experimental data with a linear regression process. The energetic effect caused by metal interaction was determined through calorimetric titration at the solid-liquid interface and gave a net thermal effect that enabled the calculation of the exothermic values and the equilibrium constant.
Resumo:
This work describes a comparative study of the electrocrystallization of Ni and Ni-P on Pt ultramicroelectrodes using chronoamperometric measurements. It was possible to confirm that in all cases a progressive nucleation was the predominant mechanism. Moreover, the application of the Atomistic Theory to the experimental rate of nuclei formation showed that the number of atoms in the critical nucleus was zero, except for Ni-P on Pt at low overpotentials were a value of one was observed. Furthermore, the physical characterisation of the different deposits on Pt by atomic force microscopy allowed observing the coalescence of the hemispherical nuclei of Ni and Ni-P at t max thus confirming the results obtained from the current-time analysis.
Resumo:
Novel modified electrodes bearing dispersed Pd and Pt particles have been prepared from poly (allyl ether of the p-benzenesulfonic acid) films with incorporated nickel particles making use of galvanic displacement reactions. The SEM analysis of the new modified electrodes revealed efficient deposition of Pd but weak up-take of Pt. Electrocatalytic hydrogenation of several classes of organic substrates were carried out using the MEs Ni, Ni/Pd and Ni/Pt. The Ni/Pd ME showed to be the best of them for the hydrogenation of double, triple and carbonyl bonds. The complete hydrogenation of the aromatic rings for the well-adsorbed substrates acetophenone and benzophenone is noteworthy.
Resumo:
Invocatio: I.N.J.C.
Resumo:
A spectrophotometric method was proposed for Ni(II) determination in alloys using a dopa-semiquinone (L-1) to form [Ni(II)(L1-)3]1-, ε = 9.3 x 10³ L mol-1 cm-1. The optimal conditions for the determination were: wavelength 590 nm, temperature 25 °C, reaction time 45 min and pH 7.5. The Beer's law was obeyed for nickel from 3.33 x 10-5 to 1.78 x 10-4 mol L-1. The method was applied to complex samples, such as inox, nickel-titanium and cobalt-chromium alloys. A study of the potential interferents revealed that Mn was the major interferent. The limit of detection and quantification were 2.88 x 10-5 mol L-1 and 3.06 x 10-5 mol L-1, respectively.
Resumo:
Cellulose acetate polymeric membranes had been prepared by a procedure of two steps, combining the method of phase inversion and the technique of hydrolysis-deposition. The first step was the preparation of the membrane, and together was organomodified with tetraethylortosilicate and 3-aminopropyltrietoxysilane. Parameters that exert influence in the complexation of the metallic ion, as pH, time of complexation, metal concentration, had been studied in laboratory using tests of metal removal. The membranes had presented resistance mechanics and reactivity to cations, being able to be an alternative for the removal, daily pay-concentration or in the study of the lability of metals complexed.
Resumo:
The present manuscript shows the synthesis of nickel hydroxide supported in carbon (Ni(OH)2/C) as a alternative material for catalytic alcohol oxidation in alkaline medium. The Ni(OH)2/C was synthesized in different percentage using a sonic bath. No current densities variation during successive cyclic voltammetry experiments was observed. The Ni(OH)2/C electrodes exhibit a potent and persistent electrocatalytic activity towards the oxidation of different alcohols. In addition, alcohols electooxidation occurs in less positive potential compared with noble metal catalyst.
Resumo:
This work describes a three-step pre-treatment route for processing spent commercial NiMo/Al2O3 catalysts. Extraction of soluble coke with n-hexane and/or leaching of foulant elements with oxalic acid were performed before burning insoluble coke under air. Oxidized catalysts were leached with 9 mol L-1 sulfuric acid. Iron was the only foulant element partially leached by oxalic acid. The amount of insoluble matter in sulfuric acid was drastically reduced when iron and/or soluble coke were previously removed. Losses of active phase metals (Ni, Mo) during leaching with oxalic acid were compensated by the increase of their recovery in the sulfuric acid leachate.
Resumo:
In esterification of oleic acid with methanol at 25 °C HPA displayed the highest activity. Moreover the HPA could be reused after being transformed into its cesium salt. In the reaction of etherification of glycerol HPA and Amberlyst 35W showed similar initial activity levels. The results of acid properties demonstrate that HPA is a strong protonic acid and that both surface and bulk protons contribute to the acidity. Because of its strong affinity for polar compounds, HPA is also seemingly dissolved in both oleic acid and methanol. The reaction in this case proceeds with the catalyst in the homogenous phase.
Resumo:
The present work describes the sorption potential of Dypterix alata (baru) for removal of Ni(II) in hydrous ethanol. Infrared spectroscopy was used for elucidating possible functional groups responsible for uptaking Ni(II). Sorption studies using Ni(II) standard solutions were carried out in batch experiments as functions of extraction time and pH solution. The Ni(II) was quantified before and after the removal experiments using Flame Atomic Absorption Spectrometry. Furthermore, based on adsorption studies and adsorption isotherms applied to the Langmuir and Freundlich models, it was possible to verify that D. alata presents a high adsorption capacity. The results show that D. alata can be used for removing Ni(II) in ethanol solutions.
Resumo:
A procedure for the simultaneous determination of Cr, Ni, and V in urine by electrothermal atomic absorption spectrometry (ET AAS) was optimized by factorial design, and performed at a pyrolysis and atomization temperatures of 1300 and 2500 ºC, respectively, using 15 µg de Mg(NO3)2 as chemical modifier. Characteristics mass of 14, 6 and 220 ρg and detection limits of the method of 0.07, 0.38 and 0.75 µg L-1 were obtained for Cr, Ni and V respectively. The methodology was validated using a Liphochek Urine Metals Control sample (Bio-Rad) (P=0.05). The methodology was applied to samples of voluntary Venezuelan people, not environmentally exposed to specific emissions, and results ranging from < LOD-1.1 and 1.3-3.3 µg L-1 was observed for Cr and V, respectively, and not detectable levels for Ni.
Resumo:
In situ ethylene polymerizations were performed using bis(cyclopentadiene)titanium dichloride supported on polyethersulfone as catalyst. The bis(cyclopentadiene)titanium dichloride supported on polyethersulfone catalyst activity estimated by ethylene polymerization was 360 kgPE/molTi/h. During polymerization the fillers used were montmorillionite nanoclays having surface modifications with 35-45 wt% dimethyl dialkyl(14-18)amine (FA) and 25-30 wt% trimethyl stearyl ammonium (FB). These fillers were pretreated with methylaluminoxine (MAO; cocatalyst) for better dispersion onto the polymer matrix. The formation of polyethylene within the whole matrix was confirmed by FTIR studies. It was found that the nature of nanofiller did not have any remarkable effect on the melting characteristics of the polymer. TGA study indicates that nanoclay FB filled polyethylene has higher thermal stability than nanoclay FA filled polyethylene. The melting temperature of the obtained polyethylenes was 142 ºC, which corresponds to that synthesized by the polyether sulfone supported catalyst.
Resumo:
The metal distribution in the surface sediment fractions of the Cachoeira River was evaluated based on the fractionation method using a five-step sequential extraction. The determination of metals was made by flame atomic absorption spectrophotometry (F AAS). Zn, Pb and Cu exhibit higher concentrations in the residual fraction of the sediment from sites that receive discharges from urban and industrial zones. High levels of Ni (60 ± 1 to 447 ± 9 µg L-1) were found in the river water, which may be detrimental to the "health" of rural communities that utilize the river water for domestic purposes without treatment.
Resumo:
Spent oxidized (500 ºC, 5 h) commercial NiW/Al2O3 catalysts were processed using two different routes: a) fusion with NaOH (650 ºC, 1 h), the roasted mass was leached in water; b) leaching with HCl or H2SO4 (70 ºC, 1-3 h). HCl was the best leachant. In both routes, soluble tungsten was extracted at pH 1 with Alamine 336 (10 vol.% in kerosene) and stripped with 2 mol L-1 NH4OH (25 ºC, one stage, aqueous/organic ratio = 1 v/v). Tungsten was isolated as ammonium paratungstate at very high yield (> 97.5%). The elements were better separated using the acidic route.