962 resultados para Network dynamics
Resumo:
We describe the classical and quantum two-dimensional nonlinear dynamics of large blue-detuned evanescent-wave guiding cold atoms in hollow fiber. We show that chaotic dynamics exists for classic dynamics, when the intensity of the beam is periodically modulated. The two-dimensional distributions of atoms in (x,y) plane are simulated. We show that the atoms will accumulate on several annular regions when the system enters a regime of global chaos. Our simulation shows that, when the atomic flux is very small, a similar distribution will be obtained if we detect the atomic distribution once each the modulation period and integrate the signals. For quantum dynamics, quantum collapses, and revivals appear. For periodically modulated optical potential, the variance of atomic position will be suppressed compared to the no modulation case. The atomic angular momentum will influence the evolution of wave function in two-dimensional quantum system of hollow fiber.
Resumo:
Sorghum [Sorghum bicolor (L,) Moench] hybrids containing the stay-green trait retain more photosynthetically active leaves under drought than do hybrids that do not contain this trait. Since the Longevity and photosynthetic capacity of a leaf are related to its N status, it is important to clarify the role of N in extending leaf greenness in stay-green hybrids. Field studies were conducted in northeastern Australia to examine the effect of three water regimes and nine hybrids on N uptake and partitioning among organs. Nine hybrids varying in the B35 and KS19 sources of stay-green were grown under a fully irrigated control, post-flowering water deficit, and terminal water deficit. For hybrids grown under terminal water deficit, stay-green was viewed as a consequence of the balance between N demand by the grain and N supply during gain filling. On the demand side, grain numbers were 16% higher in the four stay-green than in the five senescent hybrids. On the supply side, age-related senescence provided an average of 34 and 42 kg N ha(-1) for stay-green and senescent hybrids, respectively. In addition, N uptake during grain filling averaged 116 and 82 kg ha(-1) in stay-green and senescent hybrids. Matching the N supply from these two sources with grain N demand found that the shortfall in N supply for grain filling in the stay-green and senescent hybrids averaged 32 and 41 kg N ha(-1) resulting in more accelerated leaf senescence in the senescent hybrids. Genotypic differences in delayed onset and reduced rate of leaf senescence were explained by differences in specific leaf nitrogen and N uptake during grain filling. Leaf nitrogen concentration at anthesis was correlated with onset (r = 0.751**, n = 27) and rate (r = -0.783**, n = 27) of leaf senescence ender terminal water deficit.
Resumo:
We consider continuous observation of the nonlinear dynamics of single atom trapped in an optical cavity by a standing wave with intensity modulation. The motion of the atom changes the phase of the field which is then monitored by homodyne detection of the output field. We show that the conditional Hilbert space dynamics of this system, subject to measurement-induced perturbations, depends strongly on whether the corresponding classical dynamics is regular or chaotic. If the classical dynamics is chaotic, the distribution of conditional Hilbert space vectors corresponding to different observation records tends to be orthogonal. This is a characteristic feature of hypersensitivity to perturbation for quantum chaotic systems.
Resumo:
Cold rubidium atoms are subjected to an amplitude-modulated far-detuned standing wave of light to form a quantum-driven pendulum. Here we discuss the dynamics of these atoms. Phase space resonances and chaotic transients of the system exhibit dynamics which can be useful in many atom optics applications as they can be utilized as means for phase space state preparation. We explain the occurrence of distinct peaks in the atomic momentum distribution, analyse them in detail and give evidence for the importance of the system for quantum chaos and decoherence studies.
Resumo:
This paper discusses an object-oriented neural network model that was developed for predicting short-term traffic conditions on a section of the Pacific Highway between Brisbane and the Gold Coast in Queensland, Australia. The feasibility of this approach is demonstrated through a time-lag recurrent network (TLRN) which was developed for predicting speed data up to 15 minutes into the future. The results obtained indicate that the TLRN is capable of predicting speed up to 5 minutes into the future with a high degree of accuracy (90-94%). Similar models, which were developed for predicting freeway travel times on the same facility, were successful in predicting travel times up to 15 minutes into the future with a similar degree of accuracy (93-95%). These results represent substantial improvements on conventional model performance and clearly demonstrate the feasibility of using the object-oriented approach for short-term traffic prediction. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Since dilute Bose gas condensates were first experimentally produced, the Gross-Pitaevskii equation has been successfully used as a descriptive tool. As a mean-field equation, it cannot by definition predict anything about the many-body quantum statistics of condensate. We show here that there are a class of dynamical systems where it cannot even make successful predictions about the mean-field behavior, starting with the process of evaporative cooling by which condensates are formed. Among others are parametric processes, such as photoassociation and dissociation of atomic and molecular condensates.
Resumo:
High performance video codec is mandatory for multimedia applications such as video-on-demand and video conferencing. Recent research has proposed numerous video coding techniques to meet the requirement in bandwidth, delay, loss and Quality-of-Service (QoS). In this paper, we present our investigations on inter-subband self-similarity within the wavelet-decomposed video frames using neural networks, and study the performance of applying the spatial network model to all video frames over time. The goal of our proposed method is to restore the highest perceptual quality for video transmitted over a highly congested network. Our contributions in this paper are: (1) A new coding model with neural network based, inter-subband redundancy (ISR) prediction for video coding using wavelet (2) The performance of 1D and 2D ISR prediction, including multiple levels of wavelet decompositions. Our result shows a short-term quality enhancement may be obtained using both 1D and 2D ISR prediction.
Resumo:
The purpose of this paper is to analyze the dynamics of national saving-investment relationship in order to determine the degree of capital mobility in 12 Latin American countries. The analytically relevant correlation is the short-term one, defined as that between changes in saving and investment. Of special interest is the speed at which variables return to the long run equilibrium relationship, which is interpreted as being negatively related to the degree of capital mobility. The long run correlation, in turn, captures the coefficient implied by the solvency constraint. We find that heterogeneity and cross-section dependence completely change the estimation of the long run coefficient. Besides we obtain a more precise short run coefficient estimate compared to the existent estimates in the literature. There is evidence of an intermediate degree of capital mobility, and the coefficients are extremely stable over time.
Resumo:
This special section brings together 4 of the 12 studies conducted within a research program analyzing the relationships among social mobilization, governance. and rural development in contemporary Latin America. The introduction Lives an overview of the contemporary significance of social movements For rural development dynamics in the region, and of the principal insights of the section papers and the broader research program of which they were a part. This significance varies Lis an effect of two distinct and uneven geographics: the geography of social movements themselves and the geography of the rural political economy. The effects that movements have oil the political economy of rural development also depend significantly oil internal characteristics of these movements. The paper identifies several such characteristics. The general pattern is that movements have had far more effect oil widening the political inclusiveness of rural development than they have oil improving its economic inclusiveness and dynamism. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Polybia scutellaris constructs huge nests characterized by numerous spinal projections on the surface. We investigated the thermal characteristics of P scutellaris nests in order to determine whether their nest temperature is homeothermically maintained and whether the spines play a role in the thermoregulation of the nests. In order to examine these hypotheses, we measured the nest temperature in a active nest and in an abandoned nest. The temperature in the active nest was almost stable at 27 degrees C, whereas that of the abandoned nest varied with changes in the ambient temperature, suggesting that nest temperature was maintained by the thermogenesis of colony individuals. In order to predict the thermal properties of the spines, a numerical simulation was employed. To construct a 3D-model of a P scutellaris nest, the nest architecture was simplified into an outer envelope and the surface spines, for both of which the initial temperature was set at 27 degrees C. The physical properties of the simulated nest were regarded to be those of wood since the nest of this species is constructed from plant materials. When the model was exposed to cool air (12 degrees C), the temperature was lower in the models with more spines. On the other hand, when the nest was heated (42 degrees C), the temperature increase was smaller in models with more spines. It is suggested that the spines act as a heat radiator, not as an insulator, against the changes in ambient temperature.
Resumo:
In this work the interaction of the antimicrobial peptide indolicidin (IND) and its mutants CP10A and CP11 with a eukaryotic membrane model was examined by molecular dynamics simulations. The aim was to analyse the behaviour of these antimicrobial peptides when they interact with a eukaryotic modelled membrane, thereby obtaining atomic detailed observations that are not experimentally available. In the simulations, the widely studied dipalmitoylphosphatidylcholine hydrated bilayer was used as a eukaryotic membrane model. In agreement with experimental observations, the peptides IND, CP10A, and CP11 insert into the bilayer differently; the peptides that insert more deeply present the major hemolytic activities. The hydrophobic residues are responsible for the insertion, but some Trp residues of the peptides remain at the bilayer/water interface because they interact with the bilayer choline groups by cation-pi interactions that should be important for recognition of eukaryotic membrane by the three studied peptides.
Resumo:
Background: Xylanases (EC 3.2.1.8) hydrolyze xylan, one of the most abundant plant polysaccharides found in nature, and have many potential applications in biotechnology. Methods: Molecular dynamics simulations were used to investigate the effects of temperature between 298 to 338 K and xylobiose binding on residues located in the substrate-binding cleft of the family 11 xylanase from Bacillus circulans (BcX). Results: In the absence of xylobiose the BcX exhibits temperature dependent movement of the thumb region which adopts an open conformation exposing the active site at the optimum catalytic temperature (328 K). In the presence of substrate, the thumb region restricts access to the active site at all temperatures, and this conformation is maintained by substrate/protein hydrogen bonds involving active site residues, including hydrogen bonds between Tyr69 and the 2` hydroxyl group of the substrate. Substrate access to the active site is regulated by temperature dependent motions that are restricted to the thumb region, and the BcX/substrate complex is stabilized by extensive intermolecular hydrogen bonding with residues in the active site. General significance: These results call for a revision of both the ""hinge-bending"" model for the activity of group 11 xylanases, and the role of Tyr69 in the catalytic mechanism. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Most previous investigations on tide-induced watertable fluctuations in coastal aquifers have been based on one-dimensional models that describe the processes in the cross-shore direction alone, assuming negligible along-shore variability. A recent study proposed a two-dimensional approximation for tide-induced watertable fluctuations that took into account coastline variations. Here, we further develop this approximation in two ways, by extending the approximation to second order and by taking into account capillary effects. Our results demonstrate that both effects can markedly influence watertable fluctuations. In particular, with the first-order approximation, the local damping rate of the tidal signal could be subject to sizable errors.
Resumo:
Drosophila Fallen, 1823 (Diptera, Drosophilidae) is for long a well-established model organism for genetics and evolutionary research. The ecology of these flies, however, has only recently been better studied. Recent papers show that Drosophila assemblies can be used as bioindicators of forested environment degradation. In this work the bioindicator potential of drosophilids was evaluated in a naturally opened environment, a coastal strand-forest (restinga). Data from nine consecutive seasonal collections revealed strong temporal fluctuation pattern of the majority of Drosophila species groups. Drosophila willistoni group was more abundant at autumns, whereas D. cardini and D. tripunctata groups were, respectively, expressive at winters and springs, and D. repleta group at both seasons. The exotic species D. simulans Sturtevant, 1919 (from D. melanogaster group) and Zaprionus indianus Gupta, 1970 were most abundant at summers. Overall, the assemblage structure did not show the same characteristics of forested or urban environments, but was similar to the forests at winters and to cities at summers. This raises the question that this locality may already been under urbanization impact. Also, this can be interpreted as an easily invaded site for exotic species, what might lead to biotic homogenization and therefore can put in check the usage of drosophilid assemblages as bioindicators at open environments.