988 resultados para Navegación a vapor - Oceano pacifico
Resumo:
Los años de producción de Larrosa y Antonio Pascual y Abad están entre 1850-1882
Resumo:
La ebullición en película es el mecanismo de transferencia de calor básico que acopla térmicamente un líquido, saturado o subenfriado, y una superficie caliente cuando existe una gran diferencia de temperatura entre ambos. Dicho mecanismo presenta la complejidad física asociada a la existencia de una capa límite convectiva de vapor en torno a la superficie caliente, así como al acoplamiento térmico radiante entre la superficie y los dos medios participativos que la rodean (vapor y líquido). Este mecanismo tiene aplicaciones tecnológicas de interés en propulsión aeroespacial, en sistemas criogénicos, en procesos industriales metalúrgicos, y en otras áreas de la Ingeniería en donde existe la necesidad de enfriar mediante ebullición superficies a alta temperatura. Por otra parte, la refrigeración por ebullición en película es un mecanismo que resulta de importancia esencial en el análisis de la seguridad de procesos industriales en los que sea previsible la interacción de agua y materiales fundidos, entre los que cabe destacar el caso de los reactores nucleares ante escenarios de riesgo en los que el acoplamiento térmico convectivo-radiante entre el combustible nuclear y el refrigerante, e incluso entre la superficie exterior de la vasija y el refrigerante, garantiza el cumplimiento de los criterios de aceptación en caso de fallo mecánico importante del sistema de refrigeración del reactor. En el presente trabajo, y para identificar el marco en que UNET-UPM desarrollará sus investigaciones sobre ebullición en película en piscina en torno a esferas, se realiza una revisión de los estudios más relevantes desarrollados en esta temática, en la que las primeras investigaciones teóricas y experimentales, de tipo fundamental, se remontan al periodo 1950-65 en que se desarrollaron los primeros proyectos de navegación espacial, y se diseñaron y construyeron los primeros reactores nucleares de aplicación comercial, promoviéndose posteriormente numerosas investigaciones que aportaron correlaciones "ad-hoc" de aplicación restringida a ciertas tecnologías, así como otras de propósito general, de menor precisión pero con mayor soporte teórico.
Resumo:
Based on our previous knowledge on Cu/Nb nanoscale metallic multilayers (NMMs), Cu/WNMMs show a good potential for applications as heat skins in plasma experiments and armors, and it could be expected that the substitution of Nb byWwould increase the strength, particularly at high temperatures. To check this hypothesis, Cu/WNMMs with individual layer thicknesses ranging between 5 and 30 nm were deposited by physical vapour deposition, and their mechanical properties were measured by nanoindentation. The results showed that, contrary to Cu/Nb NMMs, the hardness was independent of the layer thickness and decreased rapidlywith temperature, especially above 200 °C. This behavior was attributed to the growth morphology of theWlayers aswell as the jagged Cu/W interface, both a consequence of the lowW adatom mobility during deposition. Therefore, future efforts on the development of Cu/Wmultilayers should concentrate on optimization of theWdeposition parameters via substrate heating and/or ion assisted deposition to increase the W adatom mobility during deposition.
Resumo:
With the final goal of integrating III-V materials on silicon substrates for tandem solar cells, the influence of the Metal-Organic Vapor Phase Epitaxy (MOVPE) environment on the minority carrier properties of silicon wafers has been evaluated. These properties will essentially determine the photovoltaic performance of the bottom cell in a III-V-on-Si tandem solar cell. A comparison of the base minority carrier lifetimes obtained for different thermal processes carried out in a MOVPE reactor on Czochralski silicon wafers has been carried out. An important degradation of minority carrier lifetime during the surface preparation (i.e. H2 anneal) has been observed. Three different mechanisms have been proposed for explaining this behavior: 1) the introduction of extrinsic impurities coming from the reactor; 2) the activation of intrinsic lifetime killing impurities coming from the wafer itself; and finally, 3) the formation of crystal defects, which eventually become recombination centers. The effect of the emitter formation by phosphorus diffusion has also been evaluated. In this sense, it has been reported that lifetime can be recovered during the emitter formation either by the effect of the P on extracting impurities, or by the role of the atomic hydrogen on passivating the defects.
Resumo:
Mapas y planos incluidos: [1. Atlántico (Océano). Magnetismo. 1744. Fig. 23. Mediterráneo (Mar). O. Triangulación geodésica. 1757. Fig. 27. Atlántico. E. (Océano). Triangulación geodésica. 1757.]
Understanding and improving the chemical vapor deposition process for solar grade silicon production
Resumo:
Esta Tesis Doctoral se centra en la investigación del proceso de producción de polisilicio para aplicaciones fotovoltaicas (FV) por la vía química; mediante procesos de depósito en fase vapor (CVD). El polisilicio para la industria FV recibe el nombre de silicio de grado solar (SoG Si). Por un lado, el proceso que domina hoy en día la producción de SoG Si está basado en la síntesis, destilación y descomposición de triclorosilano (TCS) en un reactor CVD -denominado reactor Siemens-. El material obtenido mediante este proceso es de muy alta pureza, pero a costa de un elevado consumo energético. Así, para alcanzar los dos principales objetivos de la industria FV basada en silicio, bajos costes de producción y bajo tiempo de retorno de la energía invertida en su fabricación, es esencial disminuir el consumo energético de los reactores Siemens. Por otro lado, una alternativa al proceso Siemens considera la descomposición de monosilano (MS) en un reactor de lecho fluidizado (FBR). Este proceso alternativo tiene un consumo energético mucho menor que el de un reactor Siemens, si bien la calidad del material resultante es también menor; pero ésta puede ser suficiente para la industria FV. A día de hoy los FBR deben aún abordar una serie de retos para que su menor consumo energético sea una ventaja suficiente comparada con otras desventajas de estos reactores. En resumen, la investigación desarrollada se centra en el proceso de depósito de polysilicio por CVD a partir de TCS -reactor Siemens-; pero también se investiga el proceso de producción de SoG Si en los FBR exponiendo las fortalezas y debilidades de esta alternativa. Para poder profundizar en el conocimiento del proceso CVD para la producción de polisilicio es clave el conocimiento de las reacciones químicas fundamentales y cómo éstas influencian la calidad del producto resultante, al mismo tiempo que comprender los fenómenos responsables del consumo energético. Por medio de un reactor Siemens de laboratorio en el que se llevan a cabo un elevado número de experimentos de depósito de polisilicio de forma satisfactoria se adquiere el conocimiento previamente descrito. Se pone de manifiesto la complejidad de los reactores CVD y de los problemas asociados a la pérdidas de calor de estos procesos. Se identifican las contribuciones a las pérdidas de calor de los reactores CVD, éstas pérdidas de calor son debidas principalmente a los fenómenos de radiación y, conducción y convección vía gases. En el caso de los reactores Siemens el fenómeno que contribuye en mayor medida al alto consumo energético son las pérdidas de calor por radiación, mientras que en los FBRs tanto la radiación como el calor transferido por transporte másico contribuyen de forma importante. Se desarrolla un modelo teórico integral para el cálculo de las pérdidas de calor en reactores Siemens. Este modelo está formado a su vez por un modelo para la evaluación de las pérdidas de calor por radiación y modelos para la evaluación de las pérdidas de calor por conducción y convección vía gases. Se ponen de manifiesto una serie de limitaciones del modelo de pérdidas de calor por radiación, y se desarrollan una serie de modificaciones que mejoran el modelo previo. El modelo integral se valida por medio un reactor Siemens de laboratorio, y una vez validado se presenta su extrapolación a la escala industrial. El proceso de conversión de TCS y MS a polisilicio se investiga mediante modelos de fluidodinámica computacional (CFD). Se desarrollan modelados CFD para un reactor Siemens de laboratorio y para un prototipo FBR. Los resultados obtenidos mediante simulación son comparados, en ambos casos, con resultados experimentales. Los modelos desarrollados se convierten en herramientas para la identificación de aquellos parámetros que tienen mayor influencia en los procesos CVD. En el caso del reactor Siemens, ambos modelos -el modelo integral y el modelado CFD permiten el estudio de los parámetros que afectan en mayor medida al elevado consumo energético, y mediante su análisis se sugieren modificaciones para este tipo de reactores que se traducirían en un menor número de kilovatios-hora consumidos por kilogramo de silicio producido. Para el caso del FBR, el modelado CFD permite analizar el efecto de una serie de parámetros sobre la distribución de temperaturas en el lecho fluidizado; y dicha distribución de temperaturas está directamente relacionada con los principales retos de este tipo de reactores. Por último, existen nuevos conceptos de depósito de polisilicio; éstos se aprovechan de la ventaja teórica de un mayor volumen depositado por unidad de tiempo -cuando una mayor superficie de depósito está disponible- con el objetivo de reducir la energía consumida por los reactores Siemens. Estos conceptos se exploran mediante cálculos teóricos y pruebas en el reactor Siemens de laboratorio. ABSTRACT This Doctoral Thesis comprises research on polysilicon production for photovoltaic (PV) applications through the chemical route: chemical vapor deposition (CVD) process. PV polysilicon is named solar grade silicon (SoG Si). On the one hand, the besetting CVD process for SoG Si production is based on the synthesis, distillation, and decomposition of thriclorosilane (TCS) in the so called Siemens reactor; high purity silicon is obtained at the expense of high energy consumption. Thus, lowering the energy consumption of the Siemens process is essential to achieve the two wider objectives for silicon-based PV technology: low production cost and low energy payback time. On the other hand, a valuable variation of this process considers the use of monosilane (MS) in a fluidized bed reactor (FBR); lower output material quality is obtained but it may fulfil the requirements for the PV industry. FBRs demand lower energy consumption than Siemens reactors but further research is necessary to address the actual challenges of these reactors. In short, this work is centered in polysilicon CVD process from TCS -Siemens reactor-; but it also offers insights on the strengths and weaknesses of the FBR for SoG Si production. In order to aid further development in polysilicon CVD is key the understanding of the fundamental reactions and how they influence the product quality, at the same time as to comprehend the phenomena responsible for the energy consumption. Experiments conducted in a laboratory Siemens reactor prove the satisfactory operation of the prototype reactor, and allow to acquire the knowledge that has been described. Complexity of the CVD reactors is stated and the heat loss problem associated with polysilicon CVD is addressed. All contributions to the energy consumption of Siemens reactors and FBRs are put forward; these phenomena are radiation and, conduction and convection via gases heat loss. In a Siemens reactor the major contributor to the energy consumption is radiation heat loss; in case of FBRs radiation and heat transfer due to mass transport are both important contributors. Theoretical models for radiation, conduction and convection heat loss in a Siemens reactor are developed; shaping a comprehensive theoretical model for heat loss in Siemens reactors. Limitations of the radiation heat loss model are put forward, and a novel contribution to the existing model is developed. The comprehensive model for heat loss is validated through a laboratory Siemens reactor, and results are scaled to industrial reactors. The process of conversion of TCS and MS gases to solid polysilicon is investigated by means of computational fluid-dynamics models. CFD models for a laboratory Siemens reactor and a FBR prototype are developed. Simulated results for both CVD prototypes are compared with experimental data. The developed models are used as a tool to investigate the parameters that more strongly influence both processes. For the Siemens reactors, both, the comprehensive theoretical model and the CFD model allow to identify the parameters responsible for the great power consumption, and thus, suggest some modifications that could decrease the ratio kilowatts-hour per kilogram of silicon produced. For the FBR, the CFD model allows to explore the effect of a number of parameters on the thermal distribution of the fluidized bed; that is the main actual challenge of these type of reactors. Finally, there exist new deposition surface concepts that take advantage of higher volume deposited per time unit -when higher deposition area is available- trying to reduce the high energy consumption of the Siemens reactors. These novel concepts are explored by means of theoretical calculations and tests in the laboratory Siemens prototype.
Resumo:
El presente proyecto tiene como principal objetivo realizar un estudio de los sistemas CNS/ATM (Comunicaciones, Navegación, Vigilancia y Gestión del Tráfico Aéreo), así como de los criterios generales bajo los cuales se realiza la navegación aérea; analizando la problemática actual y planteando los retos futuros.
Resumo:
En esta tesis se presenta el desarrollo de un esquema de cooperación entre vehículos terrestres (UGV) y aéreos (UAV) no tripulados, que sirve de base para conformar dos flotas de robots autónomos (denominadas FRACTAL y RoMA). Con el fin de comprobar, en diferentes escenarios y con diferente tareas, la validez de las estrategias de coordinación y cooperación propuestas en la tesis se utilizan los robots de la flota FRACTAL, que sirven como plataforma de prueba para tareas como el uso de vehículos aéreos y terrestres para apoyar labores de búsqueda y rescate en zonas de emergencia y la cooperación de una flota de robots para labores agrícolas. Se demuestra además, que el uso de la técnica de control no lineal conocida como Control por Modos Deslizantes puede ser aplicada no solo para conseguir la navegación autónoma individual de un robot aéreo o terrestre, sino también en tareas que requieren la navegación coordinada y sin colisiones de varios robots en un ambiente compartido. Para esto, se conceptualiza teóricamente el uso de la técnica de Control por Modos Deslizantes como estrategia de coordinación entre robots, extendiendo su aplicación a robots no-holonómicos en R2 y a robots aéreos en el espacio tridimensional. Después de dicha contextualización teórica, se analizan las condiciones necesarias para determinar la estabilidad del sistema multi-robot controlado y, finalmente, se comprueban las características de estabilidad y robustez ofrecidas por esta técnica de control. Tales comprobaciones se hacen simulando la navegación segura y eficiente de un grupo de UGVs para la detección de posibles riesgos ambientales, aprovechando la información aportada por un UAV. Para estas simulaciones se utilizan los modelos matemáticos de robots de la flota RoMA. Estas tareas coordinadas entre los robots se hacen posibles gracias a la efectividad, estabilidad y robustez de las estrategias de control que se desarrollan como núcleo fundamental de este trabajo de investigación. ABSTRACT This thesis presents the development of a cooperation scheme between unmanned ground (UGV) and aerial (UAV) vehicles. This scheme is the basis for forming two fleets of autonomous robots (called FRACTAL and RoMA). In order to assess, in different settings and on different tasks, the validity of the coordination and cooperation strategies proposed in the thesis, the FRACTAL fleet robots serves as a test bed for tasks like using coordinated aerial and ground vehicles to support search and rescue work in emergency scenarios or cooperation of a fleet of robots for agriculture. It is also shown that using the technique of nonlinear control known as Sliding Modes Control (SMC) can be applied not only for individual autonomous navigation of an aircraft or land robot, but also in tasks requiring the coordinated navigation of several robots, without collisions, in a shared environment. To this purpose, a strategy of coordination between robots using Sliding Mode Control technique is theoretically conceptualized, extending its application to non-holonomic robots in R2 and aerial robots in three-dimensional space. After this theoretical contextualization, the stability conditions of multi-robot system are analyzed, and finally, the stability and robustness characteristics are validated. Such validations are made with simulated experiments about the safe and efficient navigation of a group of UGV for the detection of possible environmental hazards, taking advantage of the information provided by a UAV. This simulations are made using mathematical models of RoMA fleet robots. These coordinated tasks of robots fleet are made possible thanks to the effectiveness, stability and robustness of the control strategies developed as core of this research.
Resumo:
El presente proyecto consiste en el estudio detallado de las solicitaciones mecánicas a las que se encuentra sometido un álabe correspondiente a la sección de baja presión de una turbina de vapor. Primeramente se llevará a cabo una introducción a este tipo de turbomáquinas con el fin de definir conceptos relevantes como el grado de reacción o el triángulo de velocidades, necesarios para comprender el funcionamiento de estas máquinas. A medida que se avance en la explicación de los fundamentos teóricos de la turbina de vapor, se irá profundizando cada vez más hasta llegar a la corona de álabes del rotor. Aquí se describirán las fuerzas de distinta naturaleza que soportan los álabes en condiciones de trabajo, así como el principio de formación de humedad que ocurre en los últimos escalonamientos de la etapa de baja presión. Una vez revisados todos los conceptos teóricos de interés, se pasará a simular con ayuda de un programa de Elementos Finitos la distribución de velocidades y de presión del flujo de vapor a su paso por un álabe de la última corona del rotor. El objetivo que se persigue es cuantificar tanto las tensiones mecánicas como los desplazamientos por deformación a los que se encuentra sometido el álabe debido a la interacción con el fluido a elevada velocidad. Posteriormente, como ampliación a este modelo, se ha tenido en cuenta el efecto de los condensados (pequeñas gotas de agua) que se forman en los últimos escalonamientos de la turbina debido a grandes subenfriamientos locales del vapor. Estas gotas impactan sobre el lado de succión del perfil del álabe, por tanto su contribución a los valores de tensión y desplazamiento que experimenta el álabe también será cuantificada en el programa de Elementos Finitos. Por último, se hará una recopilación de las principales conclusiones obtenidas tras el modelo simulado por ordenador, así como de la importancia de la calidad del vapor para el buen funcionamiento de la turbomáquina.
Resumo:
Tit. formado del principio del texto
Resumo:
El presente estudio se enmarca en el proyecto GreenMVC en el que colabora el CIEMAT (Centro de Investigaciones Energéticas Medioambientales y Tecnológicas). Este proyecto tiene como objetivo el análisis y optimización de la tecnología de desalación de compresión mecánica de vapor (MVC), para ser alimentado mediante fuentes de energía renovables. El empleo de fuentes de energía renovables para la alimentación de procesos de desalación es una opción prometedora especialmente en áreas remotas y regiones áridas donde las fuentes de energía convencionales son excesivamente caras o no están disponibles. En este proyecto se analiza la viabilidad tanto técnica como económica de un sistema de desalación de agua mediante compresión mecánica de vapor (MVC) activado por energía eólica, como una alternativa para el abastecimiento de agua limpia respetuosa con el medioambiente. Una de las principales dificultades del accionamiento de la desaladora MVC mediante energía eólica, y en lo que principalmente se centra este proyecto, es la caracterización de su funcionamiento ante las variaciones de potencia subministrada debido a la naturaleza variable del recurso eólico. Generalmente, estos sistemas de desalación están conectados a la red, trabajando constantemente en su punto de funcionamiento nominal. Para poder obtener la relación entre la potencia suministrada y el caudal obtenido para una desaladora, previamente, se ha realizado un modelo termodinámico de la desaladora y, a partir de éste, se han analizado los principios de funcionamiento de este proceso de desalación. Modelando también la energía eólica, finalmente se crea un modelo único del conjunto conformado por la desaladora MVC y el aerogenerador capaz de caracterizar el funcionamiento a régimen variable y predecir la producción, de modo que se pueda determinar la viabilidad técnica del proyecto. Otro de los objetivos principales, era analizar la viabilidad económica. Para ello, también empleando el modelo realizado, se ha estudiado el coste de la desalación MVC yde la generación de energía eléctrica mediante energía eólica. Consiguiendo, finalmente,estimar el coste de desalación en función de el diseño de la desaladora empleada, el tamaño del aerogenerador, y del recurso eólico del emplazamiento.
Resumo:
Este Proyecto Fin de Carrera tiene como principal objetivo analizar la evolución de los Sistemas de Comunicación por Satélite, así como dar a conocer al lector la tecnología EGNOS y su aplicabilidad como ayuda a la navegación Aeronáutica. Este trabajo comenzará con una primera parte, la cual está dedicada a conocer qué es un satélite y como ha sido su evolución a lo largo de la historia, desde la aparición del primer satélite hasta nuestros días, así como mostrar las partes que lo componen y su proceso de lanzamiento. Todo este capítulo, sirve de base para poder entender mejor las siguientes partes del proyecto. En la segunda parte de esta memoria, se entra más en detalle y se desarrollan los temas principales de este documento. Podríamos decir que este segundo capítulo se divide a su vez en dos subpartes claramente diferenciadas: En la primera, se analiza la estructura de un sistema de comunicaciones por satélite, los diferentes tipos de satélites según su órbita o según su finalidad, viendo unos claros ejemplos de cada uno de ellos, así como las bandas de frecuencias en las que trabajan. Para concluir esta sección se habla de los diferentes tipos de servicios que ofrecen las comunicaciones por satélite para centrarnos más adelante en los servicios aeronáuticos. En la segunda parte, se habla de la aplicación de la tecnología EGNOS como ayuda a la navegación aeronáutica. Para ello, primero se explican los diferentes sistemas de navegación que usan las aeronaves, entre los que se encuentran los sistemas VOR, DME, ADF y TACAN, y después se introduce al usuario a la tecnología EGNOS, viendo su arquitectura y explicando su funcionamiento. Como ejemplo de aplicabilidad de esta tecnología se explica el novedoso sistema SLS que llevan las aeronaves. Toda esta segunda parte constituye el cuerpo del proyecto y el punto más importante de esta memoria. Para finalizar, en la última parte del Proyecto Fin de Carrera, se habla del presente y futuro del sistema EGNOS evaluando sus principales ventajas y las conclusiones que se han sacado al hacer esta memoria. ABSTRACT. This thesis has as main objective to analyze the evolution of satellite communication systems, as well as to inform the reader about EGNOS technology and its applicability as an aid to aeronautical navigation. This document will begin with a first part, which is dedicated to know what a satellite is and how has its evolution been throughout history, from the appearance of the first satellite until nowadays, as well as showing the parts that it is composed of and different launch processes. This chapter serves as a base to a better understanding of these parts of the project. In the second part of this report, more detail is introduced and it is developed the main themes of this document. We could say that this second chapter is divided in two clearly differentiated subparts: The first, analyzes the structure of a communications system by satellite, different types of satellites according to its orbit or according to their purpose, seeing some clear examples of each of them, as well as the frequency bands in which they work. To conclude, this section refers to different types of services offered by satellite communications to focus later in the aeronautical services. In the second part, application of EGNOS technology is referred as an aid to the aeronautical navigation. To do this, first they are explained the different navigation systems that the aircraft uses, which include VOR, DME, ADF and TACAN systems, and then EGNOS technology is introduced to the user, seeing its architecture and explaining its operation. As an example of applicability of this technology, the new system SLS carried by the aircraft is explained. Throughout this second part it is constituted the body of the project and the most important point of this report. Finally, in the last part of the thesis, the present and future of the EGNOS system are analyzed evaluating the main advantages and conclusions that have been obtained to make this memory.