969 resultados para Natural language interface


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Semantic Web (SW) offers an opportunity to develop novel, sophisticated forms of question answering (QA). Specifically, the availability of distributed semantic markup on a large scale opens the way to QA systems which can make use of such semantic information to provide precise, formally derived answers to questions. At the same time the distributed, heterogeneous, large-scale nature of the semantic information introduces significant challenges. In this paper we describe the design of a QA system, PowerAqua, designed to exploit semantic markup on the web to provide answers to questions posed in natural language. PowerAqua does not assume that the user has any prior information about the semantic resources. The system takes as input a natural language query, translates it into a set of logical queries, which are then answered by consulting and aggregating information derived from multiple heterogeneous semantic sources.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We show a new method for term extraction from a domain relevant corpus using natural language processing for the purposes of semi-automatic ontology learning. Literature shows that topical words occur in bursts. We find that the ranking of extracted terms is insensitive to the choice of population model, but calculating frequencies relative to the burst size rather than the document length in words yields significantly different results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Social streams have proven to be the mostup-to-date and inclusive information on cur-rent events. In this paper we propose a novelprobabilistic modelling framework, called violence detection model (VDM), which enables the identification of text containing violent content and extraction of violence-related topics over social media data. The proposed VDM model does not require any labeled corpora for training, instead, it only needs the in-corporation of word prior knowledge which captures whether a word indicates violence or not. We propose a novel approach of deriving word prior knowledge using the relative entropy measurement of words based on the in-tuition that low entropy words are indicative of semantically coherent topics and therefore more informative, while high entropy words indicates words whose usage is more topical diverse and therefore less informative. Our proposed VDM model has been evaluated on the TREC Microblog 2011 dataset to identify topics related to violence. Experimental results show that deriving word priors using our proposed relative entropy method is more effective than the widely-used information gain method. Moreover, VDM gives higher violence classification results and produces more coherent violence-related topics compared toa few competitive baselines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The management and sharing of complex data, information and knowledge is a fundamental and growing concern in the Water and other Industries for a variety of reasons. For example, risks and uncertainties associated with climate, and other changes require knowledge to prepare for a range of future scenarios and potential extreme events. Formal ways in which knowledge can be established and managed can help deliver efficiencies on acquisition, structuring and filtering to provide only the essential aspects of the knowledge really needed. Ontologies are a key technology for this knowledge management. The construction of ontologies is a considerable overhead on any knowledge management programme. Hence current computer science research is investigating generating ontologies automatically from documents using text mining and natural language techniques. As an example of this, results from application of the Text2Onto tool to stakeholder documents for a project on sustainable water cycle management in new developments are presented. It is concluded that by adopting ontological representations sooner, rather than later in an analytical process, decision makers will be able to make better use of highly knowledgeable systems containing automated services to ensure that sustainability considerations are included.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Yorick Wilks is a central figure in the fields of Natural Language Processing and Artificial Intelligence. His influence has extends to many areas of these fields and includes contributions to Machine Translation, word sense disambiguation, dialogue modeling and Information Extraction.This book celebrates the work of Yorick Wilks from the perspective of his peers. It consists of original chapters each of which analyses an aspect of his work and links it to current thinking in that area. His work has spanned over four decades but is shown to be pertinent to recent developments in language processing such as the Semantic Web.This volume forms a two-part set together with Words and Intelligence I, Selected Works by Yorick Wilks, by the same editors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Corpora—large collections of written and/or spoken text stored and accessed electronically—provide the means of investigating language that is of growing importance academically and professionally. Corpora are now routinely used in the following fields: The production of dictionaries and other reference materials; The development of aids to translation; Language teaching materials; The investigation of ideologies and cultural assumptions; Natural language processing; and The investigation of all aspects of linguistic behaviour, including vocabulary, grammar and pragmatics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The project “Reference in Discourse” deals with the selection of a specific object from a visual scene in a natural language situation. The goal of this research is to explain this everyday discourse reference task in terms of a concept generation process based on subconceptual visual and verbal information. The system OINC (Object Identification in Natural Communicators) aims at solving this problem in a psychologically adequate way. The system’s difficulties occurring with incomplete and deviant descriptions correspond to the data from experiments with human subjects. The results of these experiments are reported.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The management and sharing of complex data, information and knowledge is a fundamental and growing concern in the Water and other Industries for a variety of reasons. For example, risks and uncertainties associated with climate, and other changes require knowledge to prepare for a range of future scenarios and potential extreme events. Formal ways in which knowledge can be established and managed can help deliver efficiencies on acquisition, structuring and filtering to provide only the essential aspects of the knowledge really needed. Ontologies are a key technology for this knowledge management. The construction of ontologies is a considerable overhead on any knowledge management programme. Hence current computer science research is investigating generating ontologies automatically from documents using text mining and natural language techniques. As an example of this, results from application of the Text2Onto tool to stakeholder documents for a project on sustainable water cycle management in new developments are presented. It is concluded that by adopting ontological representations sooner, rather than later in an analytical process, decision makers will be able to make better use of highly knowledgeable systems containing automated services to ensure that sustainability considerations are included. © 2010 The authors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The technology of record, storage and processing of the texts, based on creation of integer index cycles is discussed. Algorithms of exact-match search and search similar on the basis of inquiry in a natural language are considered. The software realizing offered approaches is described, and examples of the electronic archives possessing properties of intellectual search are resulted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Universal Networking Language (UNL) is an interlingua designed to be the base of several natural language processing systems aiming to support multilinguality in internet. One of the main components of the language is the dictionary of Universal Words (UWs), which links the vocabularies of the different languages involved in the project. As any NLP system, coverage and accuracy in its lexical resources are crucial for the development of the system. In this paper, the authors describes how a large coverage UWs dictionary was automatically created, based on an existent and well known resource like the English WordNet. Other aspects like implementation details and the evaluation of the final UW set are also depicted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this report we summarize the state-of-the-art of speech emotion recognition from the signal processing point of view. On the bases of multi-corporal experiments with machine-learning classifiers, the observation is made that existing approaches for supervised machine learning lead to database dependent classifiers which can not be applied for multi-language speech emotion recognition without additional training because they discriminate the emotion classes following the used training language. As there are experimental results showing that Humans can perform language independent categorisation, we made a parallel between machine recognition and the cognitive process and tried to discover the sources of these divergent results. The analysis suggests that the main difference is that the speech perception allows extraction of language independent features although language dependent features are incorporated in all levels of the speech signal and play as a strong discriminative function in human perception. Based on several results in related domains, we have suggested that in addition, the cognitive process of emotion-recognition is based on categorisation, assisted by some hierarchical structure of the emotional categories, existing in the cognitive space of all humans. We propose a strategy for developing language independent machine emotion recognition, related to the identification of language independent speech features and the use of additional information from visual (expression) features.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper presents an approach to extraction of facts from texts of documents. This approach is based on using knowledge about the subject domain, specialized dictionary and the schemes of facts that describe fact structures taking into consideration both semantic and syntactic compatibility of elements of facts. Actually extracted facts combine into one structure the dictionary lexical objects found in the text and match them against concepts of subject domain ontology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years, learning word vector representations has attracted much interest in Natural Language Processing. Word representations or embeddings learned using unsupervised methods help addressing the problem of traditional bag-of-word approaches which fail to capture contextual semantics. In this paper we go beyond the vector representations at the word level and propose a novel framework that learns higher-level feature representations of n-grams, phrases and sentences using a deep neural network built from stacked Convolutional Restricted Boltzmann Machines (CRBMs). These representations have been shown to map syntactically and semantically related n-grams to closeby locations in the hidden feature space. We have experimented to additionally incorporate these higher-level features into supervised classifier training for two sentiment analysis tasks: subjectivity classification and sentiment classification. Our results have demonstrated the success of our proposed framework with 4% improvement in accuracy observed for subjectivity classification and improved the results achieved for sentiment classification over models trained without our higher level features.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

* This work was financially supported by RFBF-04-01-00858.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

World’s mobile market pushes past 2 billion lines in 2005. Success in these competitive markets requires operational excellence with product and service innovation to improve the mobile performance. Mobile users very often prefer to send a mobile instant message or text messages rather than talking on a mobile. Well developed “written speech analysis” does not work not only with “verbal speech” but also with “mobile text messages”. The main purpose of our paper is, firstly, to highlight the problems of mobile text messages processing and, secondly, to show the possible ways of solving these problems.