921 resultados para Nanostructured gold surface
Resumo:
In this paper, a microarray-based surface-enhanced Raman spectroscopic (SERS) assay for detection of kinase functionality and inhibition has been reported. Biotinylated anti-phosphoserinen antibodies mark the phosphorylation and inhibition events and gold nanoparticles are attached to the antibodies by standard avidin-biotin chemistry, followed by silver deposition for SERS signal enhancement. The avidin conjugated fluorescein is used as SERS probe. The alpha-catalytic subunit of cyclic adenosine 5'-monophosphate (cAMP) dependent protein kinase (PKA), its well known substrate, kemptide, and three inhibitors, H89, HA1077, and KN62 have been chosen here to establish the SERS assay. As expected, highly selective inhibition of PKA is demonstrated with the inhibitor H89 and the inhibition assay enable to detect kinase inhibition as well as derive IC50 (half maximal inhibitory concentration) plots.
Resumo:
In this paper, we for the first time report a polyol method for large-scale synthesis of rectangular silver nanorods in the presence of directing agent and seeds. This method has some clear advantages including simplicity, high quality, and ease of scaleup. Silver nanowires or silver nanorods with a submicrometer diameter could also be facilely prepared when the reaction parameters are slightly changed. Furthermore, a liquid-liquid assembly strategy has been employed to construct uniform rectangular silver nanorod arrays on a solid substrate which could be used as surface-enhanced Raman scattering (SERS) substrates with high SERS activity, stability, and reproducibility. It is found that the SERS spectra obtained from the probe molecules with the different concentrations show different SERS intensifies. As the concentration of 4-aminothiophenol (4-ATP) or rhodamine 6G (R6G) increases, the SERS intensities progressively increase. The enhancement factor for 4-ATP and R6G should be as large as 5.06 x 10(4) or much larger than the value of 5.06 x 10(8), respectively.
Resumo:
In this communication, biosynthesis of gold nanoparticles assisted by Escherichia coli DH5 alpha and its application on direct electrochemistry of hemoglobin are reported. The gold nanoparticles formed on the bacteria surface are mostly spherical. The direct electrochemistry of hemoglobin can be achieved by incorporated into the bio-nanocomposite films on a glassy carbon electrode.
Resumo:
alpha-Actinin has been shown to be capable of interacting with some special membrane phospholipids directly, which is important for its function. In this study, hybrid bilayer membranes composed of negatively charged lipids are constructed on the surface plasmon resonance gold substrate and on the gold electrode, respectively, and the interaction between alpha-actinin and negatively charged lipids membrane is investigated by surface plasmon resonance, cyclic voltammetry and electrochemical impedance spectroscopy methods. alpha-Actinin is proved to be able to interact with the negatively charged lipids membrane directly. It can also insert at least partly into the membrane or lead to some defect or lesion in the membrane, which increase the permeability of the membrane. This study would bring some insight on the interaction between the alpha-actinin and the cell membranes in vivo.
Resumo:
The conformational changes of bovine serum albumin (BSA) in the albumin:gold nanoparticle bioconjugates were investigated in detail by various spectroscopic techniques including UV-vis absorption, fluorescence, circular dichroism, and Fourier transform infrared spectroscopies. Our studies suggested that albumin in the bioconjugates that was prepared by the common adsorption method underwent substantial conformational changes at both secondary and tertiary structure levels. BSA was found to adopt a more flexible conformational state on the boundary surface of gold nanoparticles as a result of the conformational changes in the bioconjugates. The conformational changes at pH 3.8, 7.0, and 9.0, which corresponded to different isomeric forms of albumin, were investigated, respectively, to probe the pH effect on the conformational changes of BSA in the bioconjugates. The results showed that the pH of the medium influenced the changes greatly and that fluorescence and circular dichroism studies further indicated that the changes were larger at higher pH.
Resumo:
A novel method based on electrostatic layer-by-layer self-assembly (LBL) technique for alternate assemblies of polyelectrolyte functionalized multi-walled carbon nanotubes (MWNTs) and platinum nanoparticles (PtNPs) is proposed. The shortened MWNTs can be functionalized with positively charged poly(diallyldimethylammonium chloride) (PDDA) based on electrostatic interaction. Through electrostatic layer-by-layer assembly, the positively charged PDDA functionalized MWNTs (PDWNTs) and negatively charged citrate-stabilized PtNPs were alternately assembled on a 3-mercaptopropanesulfonic sodium (NIPS) modified gold electrode and also on other negatively charged surface, e.g. quartz slide and indium-tin-oxide (ITO) plate, directly forming the three-dimensional (3D) nanostructured materials. This is a very general and powerful technique for the assembling three-dimensional nanostructured materials containing carbon nanotubes (CNTs) and nanoparticles. Thus prepared multilayer films were characterized by ultraviolet-visiblenear-infrared spectroscopy (UV-vis-NIR), scanning electron microscopy (SEM) and cyclic voltammetry (CV). Regular growth of the mutilayer films is monitored by UV-vis-NIR.
Resumo:
In this paper, we report a simple method of fabricating silver and gold nanostructures at the air - water interface, which can be spontaneously assembled through the reduction of AgNO3 and HAuCl4 with ultraviolet (UV) irradiation in the presence of polyacrylic acid (PAA), respectively. It was found that the building blocks in the silver nanostructure are mainly interwoven silver nanofilaments, while those of the gold nanostructure are mainly different sizes of gold nanoparticles and some truncated gold nanoplates, and even coalescence into networks. At the air - water interface, these silver and gold nanostructures can be easily transferred onto the surface of indium tin oxide (ITO) slides and used for electrochemical measurements. After a replacement reaction with H2PdCl4, the silver nanostructure is transformed into a Ag - Pd bimetallic nanostructure, with good electrocatalytic activity for O-2 reduction. The gold nanostructure can also show high electrocatalytic activity to the oxidation of nitric oxide (NO) with a detection limit of about 10 mu M NaNO2 at S/N = 3.
Resumo:
Through electrostatic layer-by-layer (LbL) assembly, negatively charged calf thymus double stranded DNA (CTds-DNA), and positively charged Zr4+ ions were alternately deposited on gold substrate modified with chemisorbed cysteamine. Thus-prepared three-dimensional DNA networks were characterized by surface plasmon resonance (SPR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and infrared reflection-absorption spectroscopy (IR-RAS). SPR spectroscopy indicates that the effective thickness of DNA monolayer in the (DNA/Zr4+), bilayer was 1.5 +/- 0.1 nm, which corresponds to the surface coverage of 79% of its full packed monolayer. At the same time, a linear increase of film thickness with increasing number of layers was also confirmed by SPR characterizations. The data of XPS and IR-RAS show that Zr4+ ions interact with both the phosphate groups and nitrogenous bases of DNA and load into the framework of DNA. Furthermore, the interactions between this composite film and heme protein cytochrome c (Cyt c) were investigated by SPR spectroscopy and electrochemistry.
Resumo:
Gold nanoparticles were deposited onto 2-mercaptoethylamine (MEA)-assembled planar gold thin film to construct gold nanoparticles modified electrode by virtue of a solution-based self-assembly strategy. Subsequently, 3-mercaptopropionic acid (MPA)-bridged copper hexacyanoferrate (CuHCF) multilayers were constructed on the as-prepared gold nanoparticles modified electrode. The resulted multilayer nanostructures were investigated by electrochemical surface plasmon resonance (EC-SPR) and atomic force microscopy (AFM) with primary emphasis upon the effect of the gold nanoparticles on the MPA/CuHCF multilayers growth and their surface morphology. Compared with the multilayer system on a planar gold electrode, the different electrochemical and optical properties might result from higher curvature effect and extraordinary surface-to-volume ratio characteristic of gold nanoparticles and the nanoparticle-selective growth of CuHCF. A dendrimer-like assembly process was proposed to explain the experiment results. This new motif of multilayer on the gold nanoparticles modified electrode was different from that of on a planar gold electrode, indicating a potential application of EC-SPR technique in the study of nanocomposite materials.
Resumo:
In this article, surface enhanced Raman scattering (SERS) of different concentrations of brilliant green (13G) on Ag nanoparticles (AgNPs) has been investigated. The results indicate that only 10(-12) M BG can be detected on AgNPs while as low as 10(-11) M BG can be detected upon the activation of AgNPs by chloride ions. The additional improvement of the detection of BG mainly derives from the increase of the electromagnetic field around AgNPs and partially from the reorientation of BG on AgNPs induced by chloride ions, which was proved by the different spectra feature in the two systems. Adsorption of BG on AgNPs has also been demonstrated in applications of living cells as optical probes based on SERS, indicating that dye-AgNPs can probe the local environment in the living cells. The related cytotoxicity measurements demonstrated that BG-AgNPs produced little cytotoxicity to the cells, which shows great potential in biornedical applications of BG labeled-AgNPs for SERS nanosensors in cells as optical probes. Meanwhile, SERS spectra of BG on AgNPs in the presence chloride ions are expected to be used in living cells as more sensitive optical probes.
Resumo:
Through electrostatic layer-by-layer (LbL) assembly, negatively charged calf thymus double stranded DNA (CTds-DNA), and positively charged Zr4+ ions were alternately deposited on gold substrate modified with chemisorbed cysteamine. Thus-prepared three-dimensional DNA networks were characterized by surface plasmon resonance (SPR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and infrared reflection-absorption spectroscopy (IR-RAS). SPR spectroscopy indicates that the effective thickness of DNA monolayer in the (DNA/Zr4+), bilayer was 1.5 +/- 0.1 nm, which corresponds to the surface coverage of 79% of its full packed monolayer. At the same time, a linear increase of film thickness with increasing number of layers was also confirmed by SPR characterizations. The data of XPS and IR-RAS show that Zr4+ ions interact with both the phosphate groups and nitrogenous bases of DNA and load into the framework of DNA. Furthermore, the interactions between this composite film and heme protein cytochrome c (Cyt c) were investigated by SPR spectroscopy and electrochemistry. Compared with the adsorption of Cyt c on DNA monolayer, this composite multilayer film can obviously enhance the amount of immobilized Cyt c confirmed by SPR reflectivity-incident angle (R-theta) curves.
Resumo:
Well-ordered nanostructured polymeric supramolecular thin films were fabricated from the supramolecular assembly of poly(styrene-block-4-vinylpyridine) (PS-b-P4VP)(H+) and poly(methyl methacrylate)-dibenzo-18-crown-6-poly(methyl methacrylate) (PMCMA). A depression Of cylindrical nanodomains was formed by the block of P4VP(H+) and PMCMA associates surrounded by PS. The repulsive force aroused from the incompatibility between the block of P4VP(H+) and PMCMA was varied through changing the molecule weight (M-w) of PMCMA, the volume fraction of the block of P4VP(H+), and annealing the film at high temperature. Increasing the repulsive force led to a change of overall morphology from ordered nanoporous to featureless structures. The effects of solvent nature and evaporation rate on the film morphology were also investigated. Further evolution of surface morphologies from nanoporous to featureless to nanoporous structures was observed upon exposure to carbon bisulfide vapors for different treatment periods. The wettability of the film surface was changed from hydrophilicity to hydrophobicity due to the changes of the film surface microscopic composition.
Resumo:
Lysozyme monolayer-protected gold nanoparticles (Au NPs) which are hydrophilic and biocompatible and show excellent colloidal stability at low temperature, ca. 4 degrees C, were synthesized in aqueous medium by chemical reduction of HAuCl4 with NaBH4 in the presence of a familiar small enzyme, lysozyme. UV-vis spectra, transmission electron microscopy (TEM), atomic force microscopy, and X-ray photoelectron spectroscopy characterization of the as prepared nanoparticles revealed the formation of well-dispersed An NPs of ca. 2 nm diameter. Moreover, the color change of the An NP solution as well as UV-vis spectroscopy and TEM measurements have also demonstrated the occurrence of Ostwald ripening of the nanoparticles at low temperature. Further characterization with Fourier transform infrared spectroscopy (FTIR) and dynamic light scattering indicated the formation of a monolayer of lysozyme molecules on the particle surface. FTIR data also indicated the intactness of the protein molecules coated on An NPs. All the characterization results showed that the monodisperse An NPs are well-coated directly with lysozyme. Driven by the dipole-dipole attraction, the protein-stabilized Au NPs self-assembled into network structures and nanowires upon aging under ambient temperature.
Resumo:
A PEO-tethered layer on a PDMS (polydimethylsiloxane) cross-linked network has been prepared by a swelling-deswelling process. During swelling, the PDMS block of a PDMS-b-PEO diblock copolymer penetrates into the PDMS substrate and interacts with PDMS chains because of the van der Waals force and hydrophobic interaction between them. Upon deswelling, the PDMS block is trapped in the PDMS matrix while the PEO, as a hydrophilic block, is tethered to the surface. The PEO-tethered layer showed stability when treated in water for 16 h. The surface fraction of PEO and the wetting property of the PEO-tethered PDMS surface can be controlled by the cross linking density of the PDMS matrix. A patterned PEO-tethered layer on a PDMS network was also created by microcontact printing and water condensation figures (CFs) were used to study the patterned surface with different wetting properties.
Resumo:
The supramolecular self-assembled monolayers (SAMs) of C-60 by thiolated beta-cyclodextrin (CD) on gold surfaces were constructed for the first time using C-60 monoanion. The results indicate that monoanionic C-60 plays a crucial role in the formation of the C-60-containing self-assembled monolayers. The generation of C-60 monoanion and the formation process of C-60 SAMs were monitored in-situ by UV-visible and near-IR spectroscopy. The resulting C-60 SAMs were fully characterized by spectroscopic ellipsometry (SE), cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), and water contact angle measurements. After the immobilization of C-60 by the SAMs of thiolated beta-CD, the film thickness increased by approximately 1 nm from 0.8 to 1.8 nm as determined by SE, demonstrating the formation of the supramolecular self-assembled monolayers of thiolated beta-CD/C-60. The new C-60 SAMs exhibited one quasi-reversible redox couple at half wave potential of -0.57 V vs SCE in aqueous solution containing 0.1 M KCl. The surface coverage of C-60 on the gold surfaces was estimated to be 1.1 x 10(-10) mol cm(-2). The XPS showed the assembly of C-60 over the thiolated beta-CD SAMs.