953 resultados para NITROUS OXIDES
Resumo:
A novel sol-gel process for preparing oxides and mixed oxides sols from precipitation and peptization process is reported in this article. Inorganic salts are used as raw materials in this study. It is found that the amount of acid has great influence on the stability and particle diameter distribution of the precursor sols. Ultrasonic treatment is used to prepare alumina sol at room temperature. The result of Al-27 NMR shows that there exist Al-13(7+) species in the sol. By controlling the sol particles with narrow particle diameter distribution, alumina, titania and silica-alumina (SA) materials with narrow mesoporous distribution are formed by regular packing of sol particles during gelation without using any templates. The results also show that the structure and particle diameter distribution of precursor sol determine the final materials' texture.
Resumo:
Ba0.5Sr0.5Co0.8Fe0.2O3-delta and Ba0.5Sr0.5Co0.8Ti0.2O3-delta oxides were synthesized by a combined EDTA-citrate complexing method. The catalytic behavior of these two oxides with the perovskite structure was studied during the reaction of methane oxidation. The pre-treatment with methane has different effect on the catalytic activities of both the oxides. The methane pre-treatment has not resulted in the change of the catalytic activity of BSCFO owing to its excellent reversibility of the perovskite structure resulting from the excellent synergistic interaction between Co and Fe in the oxide. However, the substitution with Ti on Fe-site in the lattice makes the methane pre-treatment have an obvious influence on the activity of the formed BSCTO oxide.
Resumo:
High-throughput screening of HZSM-5 supported metal-oxides catalysts were carried out for the coupling reaction of methane with CO to aromatics in a multi-stream reactor system. Zn/HZSM-5 and Mo/HZSM-5 were observed to be rather effective for the catalytic formation of aromatics from the coupling reaction of methane with CO. Temperature-programmed reaction has further proven the efficiency of the coupling of methane and CO over Zn/HZSM-5 catalyst. The results were also validated in a conventional fixed-bed reactor coupled with GC. The results propose that the coupling methane with CO toward benzene and naphthalene can be catalyzed by Zn/HZSM-5 at 500 ° C. Both methane and CO are needed for the formation of reactive coke on the catalyst, and the reactive coke may be the initial product in the producing of hydrocarbons. © 2005 Elsevier B.V. All rights reserved.
Resumo:
The Li-ion battery has for a number of years been a key factor that has enabled an ever increasing number of modern consumer devices, while in recent years has also been sought to power a range of emerging electric and hybrid electric vehicles. Due to their importance and popularity, a number of characteristics of Li-ion batteries have been subjected to intense work aimed at radical improvement. Although electrode material selection intrinsically defines characteristics like maximum capacity or voltage, engineering of the electrode structure may yield significant improvements to the lifetime performance of the battery, which would not be available if the material was used in its bulk form. The body of work presented in this thesis describes the relationship between the structure of electrochemically active materials and the course of the electrochemical processes occurring within the electrode. Chapter one describes the motivation behind the research presented herein. Chapter two serves to highlight a number of key advancements which have been made and detailed in the literature over recent years, pertaining to the use of nanostructured materials in Li-ion technology. Chapter three details methods and techniques applied in developing the body of work presented in this thesis. Chapter four details structural, molecular and electrochemical characteristics of tin oxide nanoparticle based electrodes, with particular emphasis on the relationship between the size distribution and the electrode performance. Chapter five presents findings of structural, electrochemical and optical study of indium oxide nanoparticles grown on silicon by molecular beam epitaxy. In chapter 6, tin oxide inverted opal electrodes are investigated for the conduct of the electrochemical performance of the electrodes under varying rate of change of potential. Chapter 7 presents the overall conclusions drawn from the results presented in this thesis, coupled with an indication of potential future work which may be explored further.
Resumo:
Colloidal photonic crystals (PhCs) possess a periodic dielectric structure which gives rise to a photonic band gap (PBG) and offer great potential in the ability to modify or control light at visible wavelengths. Although the refractive index contrast between the void or infill and the matrix material is paramount for photonics applications, integration into real optoelectronics devices will require a range of added functionalities such as conductivity. As such, colloidal PhCs can be used as templates to direct infiltration of other functional materials using a range of deposition strategies. The work in this thesis seeks to address two challenges; first to develop a reproducible strategy based on Langmuir-Blodgett (LB) deposition to assemble high quality colloidal PhCs based on silica with precise film thickness as most other assembly methods suffer from a lack of reproducibility thickness control. The second is to investigate the use of LBdeposited colloidal PhCs as templates for infiltration with conducting metal oxide materials using vapor phase deposition techniques. Part of this work describes the synthesis and assembly of colloidal silica spheres with different surface chemical functionalities at the air-water interface in preparation for LB deposition. Modification of surface funtionality conferred varying levels of hydrophobicity upon the particles. The behaviour of silica monolayer films at the air-water interface was characterised by Brewster Angle Microscopy and surface pressure isotherms with a view to optimising the parameters for LB deposition of multilayer colloidal PhC films. Optical characterisation of LB-fabricated colloidal PhCs indicated high quality photonic behaviour, exhibiting a pseudo PBG with a sharp Bragg diffraction peak in the visible region and reflectance intensities greater than 60%. Finally the atomic layer deposition (ALD) of nominally undoped ZnO and aluminium “doped” ZnO (Al-doped ZnO) inside the pores of a colloidal PhC assembled by the LB technique was carried out. ALD growth in this study was performed using trimethyl aluminium (TMA) and water as precursors for the alumina and diethyl zinc (DEZn) and water for the ZnO. The ZnO:Al films were grown in a laminate mode, where DEZn pulses were substituted for TMA pulses in the sequences with a Zn:Al ratio 19:1. The ALD growth of ZnO and ZnO:Al in colloidal PhCs was shown to be highly conformal, tuneable and reproducible whilst maintaining excellent photonic character. Furthermore, at high levels of infiltration the opal composite films demonstrated significant conductivity.
Insertion of metal oxides into block copolymer nanopatterns as robust etch masks for nanolithography
Resumo:
Directed self-assembly (DSA) of block copolymers (BCPs) is a prime candidate to further extend dimensional scaling of silicon integrated circuit features for the nanoelectronic industry. Top-down optical techniques employed for photoresist patterning are predicted to reach an endpoint due to diffraction limits. Additionally, the prohibitive costs for “fabs” and high volume manufacturing tools are issues that have led the search for alternative complementary patterning processes. This thesis reports the fabrication of semiconductor features from nanoscale on-chip etch masks using “high χ” BCP materials. Fabrication of silicon and germanium nanofins via metal-oxide enhanced BCP on-chip etch masks that might be of importance for future Fin-field effect transistor (FinFETs) application are detailed.