954 resultados para Muscle function


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Masticatory muscle contraction causes both jaw movement and tissue deformation during function. Natural chewing data from 25 adult miniature pigs were studied by means of time series analysis. The data set included simultaneous recordings of electromyography (EMG) from bilateral masseter (MA), zygomaticomandibularis (ZM) and lateral pterygoid muscles, bone surface strains from the left squamosal bone (SQ), condylar neck (CD) and mandibular corpus (MD), and linear deformation of the capsule of the jaw joint measured bilaterally using differential variable reluctance transducers. Pairwise comparisons were examined by calculating the cross-correlation functions. Jaw-adductor muscle activity of MA and ZM was found to be highly cross-correlated with CD and SQ strains and weakly with MD strain. No muscle’s activity was strongly linked to capsular deformation of the jaw joint, nor were bone strains and capsular deformation tightly linked. Homologous muscle pairs showed the greatest synchronization of signals, but the signals themselves were not significantly more correlated than those of non-homologous muscle pairs. These results suggested that bone strains and capsular deformation are driven by different mechanical regimes. Muscle contraction and ensuing reaction forces are probably responsible for bone strains, whereas capsular deformation is more likely a product of movement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Our objective was to relate immunological data for healthy but sedentary elderly women to aerobic power, strength, and mood state. Methods: We measured peak aerobic power and one-repetition maximum strength along with mood (depression and fatigue), quality of life and carbohydrate intake on 42 women aged 60-77 years. Standard immunological techniques determined natural killer cell count and cytotoxic activity (NKCA), proliferative responses to phytohemaglutinin and OKT3, various lymphocyte subpopulations (CD3(+), CD3(-)CD19(+), CD56(+), CD4(+), CD8(+), CD56(dim) and CD56(bright)), and markers of activation, maturation, down-regulation and susceptibility to apoptosis (CD25(+), CD28(+), CD45RA(+), CD45RO(+), CD69(+), CD95(+), HLA-DR+). Results: Correlations of immune parameters with aerobic power and strength were very similar for absolute and relative immunological data. In the group as a whole, the only correlation with aerobic power was -0.35 (relative CD4(+)CD69(+) count), but in subjects with values <22.6 mL kg(-1) min(-1) correlations ranged from -0.57 (relative CD4(+)CD45RO(+)) to 0.92 (absolute CD56(dim)HLA-DR+). In terms of muscle strength, univariate correlation coefficients ranged from -0.34 (relative and absolute CD3(+)CD4(+)CD8(+)) to +0.48 (absolute CD3(+)HLA-DR+.) and +0.50 (absolute CD8(+)CD45RA(+)CD45RO(+)). Neither NKCA nor lymphocyte proliferation were correlated with aerobic power or muscle strength. Although mood state and quality of life can sometimes be influenced by an individual's fitness level, our multivariate analyses suggested that depression, fatigue and quality of life were more important determinants of immune profile than our fitness measures. Conclusions: Psychological changes associated with aging may have a substantial adverse effect upon the immune system, and immunological function may be enhanced more by addressing these issues than by focusing upon aerobic or resistance training. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Heart failure (HF) is known to lead to skeletal muscle atrophy and dysfunction. However, intracellular mechanisms underlying HF-induced myopathy are not fully understood. We hypothesized that HF would increase oxidative stress and ubiquitin-proteasome system (UPS) activation in skeletal muscle of sympathetic hyperactivity mouse model. We also tested the hypothesis that aerobic exercise training (AET) would reestablish UPS activation in mice and human HF. Methods/Principal Findings: Time-course evaluation of plantaris muscle cross-sectional area, lipid hydroperoxidation, protein carbonylation and chymotrypsin-like proteasome activity was performed in a mouse model of sympathetic hyperactivity-induced HF. At the 7th month of age, HF mice displayed skeletal muscle atrophy, increased oxidative stress and UPS overactivation. Moderate-intensity AET restored lipid hydroperoxides and carbonylated protein levels paralleled by reduced E3 ligases mRNA levels, and reestablished chymotrypsin-like proteasome activity and plantaris trophicity. In human HF (patients randomized to sedentary or moderate-intensity AET protocol), skeletal muscle chymotrypsin-like proteasome activity was also increased and AET restored it to healthy control subjects' levels. Conclusions: Collectively, our data provide evidence that AET effectively counteracts redox imbalance and UPS overactivation, preventing skeletal myopathy and exercise intolerance in sympathetic hyperactivity-induced HF in mice. Of particular interest, AET attenuates skeletal muscle proteasome activity paralleled by improved aerobic capacity in HF patients, which is not achieved by drug treatment itself. Altogether these findings strengthen the clinical relevance of AET in the treatment of HF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exercise training (ET) is an important intervention for chronic diseases such as diabetes mellitus (DM). However, it is not known whether previous exercise training intervention alters the physiological and medical complications of these diseases. We investigated the effects of previous ET on the progression of renal disease and cardiovascular autonomic control in rats with streptozotocin (STZ)-induced DM. Male Wistar rats were divided into five groups. All groups were followed for 15 weeks. Trained control and trained diabetic rats underwent 10 weeks of exercise training, whereas previously trained diabetic rats underwent 14 weeks of exercise training. Renal function, proteinuria, renal sympathetic nerve activity (RSNA) and the echocardiographic parameters autonomic modulation and baroreflex sensitivity (BRS) were evaluated. In the previously trained group, the urinary albumin/creatinine ratio was reduced compared with the sedentary diabetic and trained diabetic groups (p < 0.05). Additionally, RSNA was normalized in the trained diabetic and previously trained diabetic animals (p < 0.05). The ejection fraction was increased in the previously trained diabetic animals compared with the diabetic and trained diabetic groups (p < 0.05), and the myocardial performance index was improved in the previously trained diabetic group compared with the diabetic and trained diabetic groups (p < 0.05). In addition, the previously trained rats had improved heart rate variability and BRS in the tachycardic response and bradycardic response in relation to the diabetic group (p < 0.05). This study demonstrates that previous ET improves the functional damage that affects DM. Additionally, our findings suggest that the development of renal and cardiac dysfunction can be minimized by 4 weeks of ET before the induction of DM by STZ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: Metformin is an insulin sensitizing agent with beneficial effects in diabetic patients on glycemic levels and in the cardiovascular system. We examined whether the metabolic changes and the vascular dysfunction in monosodium glutamate-induced obese non-diabetic (MSG) rats might be improved by metformin. Main methods: 16 week-old MSG rats were treated with metformin for 15 days and compared with age-matched untreated MSG and non-obese non-diabetic rats (control). Blood pressure, insulin sensitivity, vascular reactivity and prostanoid release in the perfused mesenteric arteriolar bed as well as nitric oxide production and reactive oxygen species generation in isolated mesenteric arteries were analyzed. Key findings: 18-week-old MSG rats displayed higher Lee index, fat accumulation, dyslipidemia, insulin resistance and hyperinsulinemia. Metformin treatment improved these alterations. The norepinephrine-induced response, increased in the mesenteric arteriolar bed from MSG rats, was corrected by metformin. Indomethacin corrected the enhanced contractile response in MSG rats but did not affect metformin effects. The sensitivity to acetylcholine, reduced in MSG rats, was also corrected by metformin. Indomethacin corrected the reduced sensitivity to acetylcholine in MSG rats but did not affect metformin effects. The sensitivity to sodium nitroprusside was increased in preparations from metformin-treated rats. Metformin treatment restored both the reduced PGI2/TXA2 ratio and the increased reactive oxygen species generation in preparations from MSG rats. Significance: Metformin improved the vascular function in MSG rats through reduction in reactive oxygen species generation, modulation of membrane hyperpolarization. correction of the unbalanced prostanoids release and increase in the sensitivity of the smooth muscle to nitric oxide. (c) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To evaluate the factors influencing the results of ulnar nerve neurotization at the motor branch of the brachii biceps muscle, aiming at the restoration of elbow flexion in patients with brachial plexus injury. Methods: 19 patients, with 18 men and 1 woman, mean age 28.7 years. Eight patients had injury to roots C5-C6 and 11, to roots C5-C6-C7. The average time interval between injury and surgery was 7.5 months. Four patients had cervical fractures associated with brachial plexus injury. The postoperative follow-up was 15.7 months. Results: Eight patients recovered elbow flexion strength MRC grade 4; two, MRC grade 3 and nine, MRC <3. There was no impairment of the previous ulnar nerve function. Conclusion: The surgical results of ulnar nerve neurotization at the motor branch of brachii biceps muscle are dependent on the interval between brachial plexus injury and surgical treatment, the presence of associated fractures of the cervical spine and occipital condyle, residual function of the C8-T1 roots after the injury and the involvement of the C7 root. Signs of reinnervation manifested up to 3 months after surgery showed better results in the long term. Level of Evidence: IV, Case Series.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Further clarification is needed with regard to the degree of atrophy in individual muscle groups and its possible relationship to joint torque deficit poststroke. Objective. The purpose of this study was to investigate quadriceps and hamstring muscle volume and strength deficits of the knee extensors and flexors in people with chronic hemiparesis compared with a control group. Design. This was a cross-sectional study. Methods. Thirteen individuals with hemiparesis due to chronic stroke (hemiparetic group) and 13 individuals who were healthy (control group) participated in this study. Motor function, quadriceps and hamstring muscle volume, and maximal concentric and eccentric contractions of the knee extensors and flexors were assessed. Results. Only the quadriceps muscle of the paretic limb showed reduced muscle volume (24%) compared with the contralateral (nonparetic) limb. There were no differences in muscle volume between the hemiparetic and control groups. The peak torque of the paretic-limb knee extensors and flexors was reduced in both contraction modes and velocities compared with the nonparetic limb (36%-67%) and with the control group (49%-75%). The nonparetic limb also showed decreased extensor and flexor peak torque compared with the control group (17%-23%). Power showed similar deficits in strength (12%-78%). There were significant correlations between motor function and strength deficits (.54-.67). Limitations. Magnetic resonance imaging coil length did not allow measurement of the proximal region of the thigh. Conclusions. There were different responses between quadriceps and hamstring muscle volumes in the paretic limb that had quadriceps muscle atrophy only. However, both paretic and nonparetic limbs showed knee extensor and flexor torque and power reduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

STUDY DESIGN: Controlled laboratory study using a cross-sectional design. OBJECTIVES: To determine whether there are any differences between the sexes in trunk, pelvis, hip, and knee kinematics, hip strength, and gluteal muscle activation during the performance of a single-leg squat in individuals with patellofemoral pain syndrome (PFPS) and control participants. BACKGROUND: Though there is a greater incidence of PFPS in females, PFPS is also quite common in males. Trunk kinematics may affect hip and knee function; however, there is a lack of studies of the influence of the trunk in individuals with PFPS. METHODS: Eighty subjects were distributed into 4 groups: females with PFPS, female controls, males with PFPS, and male controls. Trunk, pelvis, hip, and knee kinematics and gluteal muscle activation were evaluated during a single-leg squat. Hip abduction and external rotation eccentric strength was measured on an isokinetic dynamometer. Group differences were assessed using a 2-way multivariate analysis of variance (sex by PFPS status). RESULTS: Compared to controls, subjects with PFPS had greater ipsilateral trunk lean (mean +/- SD, 9.3 degrees +/- 5.30 degrees versus 6.7 degrees +/- 3.0 degrees; P = .012), contralateral pelvic drop (10.3 degrees +/- 4.7 degrees versus 7.4 degrees 3.8 degrees; P = .003), hip adduction (14.8 degrees +/- 7.8 degrees versus 10.8 degrees +/- 5.6 degrees; P<.0001), and knee abduction (9.2 degrees +/- 5.0 degrees versus 5.8 degrees +/- 3.4 degrees; P<.0001) when performing a single-leg squat. Subjects with PFPS also had 18% less hip abduction and 17% less hip external rotation strength. Compared to female controls, females with PFPS had more hip internal rotation (P<.05) and less muscle activation of the gluteus medius (P = .017) during the single-leg squat. CONCLUSION: Despite many similarities in findings for males and females with PFPS, there may be specific sex differences that warrant consideration in future studies and when clinically evaluating and treating females with PFPS. J Orthop Sports Phys Ther 2012;42(6):491-501, Epub 8 March 2012. doi:10.2519/jospt.2012.3987

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Increased plasma concentrations of free fatty acids (FFA) can lead to insulin resistance in skeletal muscle, impaired effects on mitochondrial function, including uncoupling of oxidative phosphorylation and decrease of endogenous antioxidant defenses. Nitric oxide (NO) is a highly diffusible gas that presents a half-life of 5-10 seconds and is involved in several physiological and pathological conditions. The effects of palmitic acid on nitric oxide (NO) production by rat skeletal muscle cells and the possible mechanism involved were investigated. Methods: Primary cultured rat skeletal muscle cells were treated with palmitic acid and NO production was assessed by nitrite measurement (Griess method) and 4,5-diaminofluorescein diacetate (DAF-2-DA) assay. Nuclear factor-kappa B (NF-kappa B) activation was evaluated by electrophoretic mobility shift assay and iNOS protein content by western blotting. Results: Palmitic acid treatment increased nitric oxide production. This effect was abolished by treatment with NOS inhibitors, L-nitro-arginine (LNA) and L-nitro-arginine methyl esther (L-NAME). NF-kappa B activation and iNOS content were increased due to palmitic acid treatment. The participation of superoxide on nitric oxide production was investigated by incubating the cells with DAF-2-DA in the presence or absence of palmitic acid, a superoxide generator system (X-XO), a mixture of NOS inhibitors and SOD-PEG (superoxide dismutase linked to polyethylene glycol). Palmitic acid and X-XO system increased NO production and this effect was abolished when cells were treated with NOS inhibitors and also with SOD-PEG. Conclusions: In summary, palmitic acid stimulates NO production in cultured skeletal muscle cells through production of superoxide, nuclear factor-kappa B activation and increase of iNOS protein content. Copyright (C) 2012 S. Karger AG, Basel

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Polyneuropathy is a complication of diabetes mellitus that has been very challenging for clinicians. It results in high public health costs and has a huge impact on patients' quality of life. Preventive interventions are still the most important approach to avoid plantar ulceration and amputation, which is the most devastating endpoint of the disease. Some therapeutic interventions improve gait quality, confidence, and quality of life; however, there is no evidence yet of an effective physical therapy treatment for recovering musculoskeletal function and foot rollover during gait that could potentially redistribute plantar pressure and reduce the risk of ulcer formation. Methods/Design: A randomised, controlled trial, with blind assessment, was designed to study the effect of a physiotherapy intervention on foot rollover during gait, range of motion, muscle strength and function of the foot and ankle, and balance confidence. The main outcome is plantar pressure during foot rollover, and the secondary outcomes are kinetic and kinematic parameters of gait, neuropathy signs and symptoms, foot and ankle range of motion and function, muscle strength, and balance confidence. The intervention is carried out for 12 weeks, twice a week, for 40-60 min each session. The follow-up period is 24 weeks from the baseline condition. Discussion: Herein, we present a more comprehensive and specific physiotherapy approach for foot and ankle function, by choosing simple tasks, focusing on recovering range of motion, strength, and functionality of the joints most impaired by diabetic polyneuropathy. In addition, this intervention aims to transfer these peripheral gains to the functional and more complex task of foot rollover during gait, in order to reduce risk of ulceration. If it shows any benefit, this protocol can be used in clinical practice and can be indicated as complementary treatment for this disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We described recently that systemic hypoxia provokes vasoconstriction in heart failure (HF) patients. We hypothesized that either the exaggerated muscle sympathetic nerve activity and/or endothelial dysfunction mediate the blunted vasodilatation during hypoxia in HF patients. Twenty-seven HF patients and 23 age-matched controls were studied. Muscle sympathetic nerve activity was assessed by microneurography and forearm blood flow (FBF) by venous occlusion plethysmography. Peripheral chemoreflex control was evaluated through the inhaling of a hypoxic gas mixture (10% O-2 and 90% N-2). Basal muscle sympathetic nerve activity was greater and basal FBF was lower in HF patients versus controls. During hypoxia, muscle sympathetic nerve activity responses were greater in HF patients, and forearm vasodilatation in HF was blunted versus controls. Phentolamine increased FBF responses in both groups, but the increase was lower in HF patients. Phentolamine and N-G-monomethyl-L-arginine infusion did not change FBF responses in HF but markedly blunted the vasodilatation in controls. FBF responses to hypoxia in the presence of vitamin C were unchanged and remained lower in HF patients versus controls. In conclusion, muscle vasoconstriction in response to hypoxia in HF patients is attributed to exaggerated reflex sympathetic nerve activation and blunted endothelial function (NO activity). We were unable to identify a role for oxidative stress in these studies. (Hypertension. 2012; 60: 669-676.) . Online Data Supplement

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction. Physical exercise including pelvic floor muscle (PFM) training seems to improve the sexual function of women with urinary incontinence. This effect in postmenopausal women who are continent has not yet been determined. Aim. The aim of this study was to assess the effect of a 3-month physical exercise protocol (PEP) on the sexual function and mood of postmenopausal women. Methods. Thirty-two sedentary, continent, sexually active women who had undergone menopause no more than 5 years earlier and who had follicle stimulating hormone levels of at least 40 mIU/mL were enrolled into this longitudinal study. All women had the ability to contract their PFMs, as assessed by vaginal bimanual palpation. Muscle strength was graded according to the Oxford Modified Grading Scale (OMGS). A PEP was performed under the guidance of a physiotherapist (M. M. F.) twice weekly for 3 months and at home three times per week. All women completed the Sexual Quotient-Female Version (SQ-F) and the Hospital Anxiety and Depression Scale (HADS) before and after the PEP. Main Outcome Measures. SQ-F to assess sexual function, HASDS to assess mood, and OMGS to grade pelvic floor muscle strength. Results. Thirty-two women (24 married women, eight women in consensual unions) completed the PEP. Following the PEP, there was a significant increase in OMGS score (2.59 +/- 1.24 vs. 3.40 +/- 1.32, P < 0.0001) and a significant decrease in the number of women suffering from anxiety (P < 0.01), but there was no effect on sexual function. Conclusion. Implementation of our PEP seemed to reduce anxiety and improve pelvic floor muscular strength in sedentary and continent postmenopausal women. However, our PEP did not improve sexual function. Uncontrolled variables, such as participation in a long-term relationship and menopause status, may have affected our results. We suggest that a randomized controlled trial be performed to confirm our results. Lara LAS, Montenegro ML, Franco MM, Abreu DCC, Rosa e Silva ACJS, Ferreira CHJ. Is the sexual satisfaction of postmenopausal women enhanced by physical exercise and pelvic floor muscle training? J Sex Med 2012; 9: 218-223.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Locomotor capacity is often considered an excellent measure of whole animal performance because it requires the integrated functioning of many morphological, physiological (and biochemical) traits. However, because studies tend to focus on either structural or functional suits of traits, we know little on whether and how morphological and physiological traits coevolve to produce adequate locomotor capacities. Hence, we investigate the evolutionary relationships between morphological and physiological parameters related to exercise physiology, using tropidurine lizards as a model. We employ a phylogenetic principal component analysis (PCA) to identify variable clusters (factors) related to morphology, energetic metabolism and muscle metabolism, and then analyze the relationships between these clusters and measures of locomotor performance, using two models (star and hierarchical phylogenies). Our data indicate that sprint performance is enhanced by simultaneous evolutionary tendencies affecting relative limb and tail size and physiological traits. Specifically, the high absolute sprint speeds exhibited by tropidurines from the sand dunes are explained by longer limbs, feet and tails and an increased proportion of glycolytic fibers in the leg muscle, contrasting with their lower capacity for overall oxidative metabolism [principal component (PC1)]. However, when sprint speeds are corrected for body size, performance correlates with a cluster (PC3) composed by moderate loads for activity metabolic rate and body size. The simultaneous measurement of morphological and physiological parameters is a powerful tool for exploring patterns of coadaptation and proposing morphophysiological associations that are not directly predictable from theory. This approach may trigger novel directions for investigating the evolution of form and function, particularly in the context of organismal performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Chronic stress is associated with cardiac remodeling; however the mechanisms have yet to be clarified. Objective: The purpose of this study was test the hypothesis that chronic stress promotes cardiac dysfunction associated to L-type calcium Ca2+ channel activity depression. Methods: Thirty-day-old male Wistar rats (70 - 100 g) were distributed into two groups: control (C) and chronic stress (St). The stress was consistently maintained at immobilization during 15 weeks, 5 times per week, 1h per day. The cardiac function was evaluated by left ventricular performance through echocardiography and by ventricular isolated papillary muscle. The myocardial papillary muscle activity was assessed at baseline conditions and with inotropic maneuvers such as: post-rest contraction and increases in extracellular Ca2+ concentration, in presence or absence of specific blockers L-type calcium channels. Results: The stress was characterized for adrenal glands hypertrophy, increase of systemic corticosterone level and arterial hypertension. The chronic stress provided left ventricular hypertrophy. The left ventricular and baseline myocardial function did not change with chronic stress. However, it improved the response of the papillary muscle in relation to positive inotropic stimulation. This function improvement was not associated with the L-type Ca2+ channel. Conclusion: Chronic stress produced cardiac hypertrophy; however, in the study of papillary muscle, the positive inotropic maneuvers potentiated cardiac function in stressed rats, without involvement of L-type Ca2+ channel. Thus, the responsible mechanisms remain unclear with respect to Ca2+ influx alterations. (Arq Bras Cardiol 2012;99(4):907-914)