937 resultados para Multivariable predictive model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A data set of a commercial Nellore beef cattle selection program was used to compare breeding models that assumed or not markers effects to estimate the breeding values, when a reduced number of animals have phenotypic, genotypic and pedigree information available. This herd complete data set was composed of 83,404 animals measured for weaning weight (WW), post-weaning gain (PWG), scrotal circumference (SC) and muscle score (MS), corresponding to 116,652 animals in the relationship matrix. Single trait analyses were performed by MTDFREML software to estimate fixed and random effects solutions using this complete data. The additive effects estimated were assumed as the reference breeding values for those animals. The individual observed phenotype of each trait was adjusted for fixed and random effects solutions, except for direct additive effects. The adjusted phenotype composed of the additive and residual parts of observed phenotype was used as dependent variable for models' comparison. Among all measured animals of this herd, only 3160 animals were genotyped for 106 SNP markers. Three models were compared in terms of changes on animals' rank, global fit and predictive ability. Model 1 included only polygenic effects, model 2 included only markers effects and model 3 included both polygenic and markers effects. Bayesian inference via Markov chain Monte Carlo methods performed by TM software was used to analyze the data for model comparison. Two different priors were adopted for markers effects in models 2 and 3, the first prior assumed was a uniform distribution (U) and, as a second prior, was assumed that markers effects were distributed as normal (N). Higher rank correlation coefficients were observed for models 3_U and 3_N, indicating a greater similarity of these models animals' rank and the rank based on the reference breeding values. Model 3_N presented a better global fit, as demonstrated by its low DIC. The best models in terms of predictive ability were models 1 and 3_N. Differences due prior assumed to markers effects in models 2 and 3 could be attributed to the better ability of normal prior in handle with collinear effects. The models 2_U and 2_N presented the worst performance, indicating that this small set of markers should not be used to genetically evaluate animals with no data, since its predictive ability is restricted. In conclusion, model 3_N presented a slight superiority when a reduce number of animals have phenotypic, genotypic and pedigree information. It could be attributed to the variation retained by markers and polygenic effects assumed together and the normal prior assumed to markers effects, that deals better with the collinearity between markers. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Lynch syndrome (LS) is the most common form of inherited predisposition to colorectal cancer (CRC), accounting for 2-5% of all CRC. LS is an autosomal dominant disease characterized by mutations in the mismatch repair genes mutL homolog 1 (MLH1), mutS homolog 2 (MSH2), postmeiotic segregation increased 1 (PMS1), post-meiotic segregation increased 2 (PMS2) and mutS homolog 6 (MSH6). Mutation risk prediction models can be incorporated into clinical practice, facilitating the decision-making process and identifying individuals for molecular investigation. This is extremely important in countries with limited economic resources. This study aims to evaluate sensitivity and specificity of five predictive models for germline mutations in repair genes in a sample of individuals with suspected Lynch syndrome. Methods: Blood samples from 88 patients were analyzed through sequencing MLH1, MSH2 and MSH6 genes. The probability of detecting a mutation was calculated using the PREMM, Barnetson, MMRpro, Wijnen and Myriad models. To evaluate the sensitivity and specificity of the models, receiver operating characteristic curves were constructed. Results: Of the 88 patients included in this analysis, 31 mutations were identified: 16 were found in the MSH2 gene, 15 in the MLH1 gene and no pathogenic mutations were identified in the MSH6 gene. It was observed that the AUC for the PREMM (0.846), Barnetson (0.850), MMRpro (0.821) and Wijnen (0.807) models did not present significant statistical difference. The Myriad model presented lower AUC (0.704) than the four other models evaluated. Considering thresholds of >= 5%, the models sensitivity varied between 1 (Myriad) and 0.87 (Wijnen) and specificity ranged from 0 (Myriad) to 0.38 (Barnetson). Conclusions: The Barnetson, PREMM, MMRpro and Wijnen models present similar AUC. The AUC of the Myriad model is statistically inferior to the four other models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the last three decades, several predictive models have been developed to estimate the somatic production of macroinvertebrates. Although the models have been evaluated for their ability to assess the production of macrobenthos in different marine ecosystems, these approaches have not been applied specifically to sandy beach macrofauna and may not be directly applicable to this transitional environment. Hence, in this study, a broad literature review of sandy beach macrofauna production was conducted and estimates obtained with cohort-based and size-based methods were collected. The performance of nine models in estimating the production of individual populations from the sandy beach environment, evaluated for all taxonomic groups combined and for individual groups separately, was assessed, comparing the production predicted by the models to the estimates obtained from the literature (observed production). Most of the models overestimated population production compared to observed production estimates, whether for all populations combined or more specific taxonomic groups. However, estimates by two models developed by Cusson and Bourget provided best fits to measured production, and thus represent the best alternatives to the cohort-based and size-based methods in this habitat. The consistent performance of one of these Cusson and Bourget models, which was developed for the macrobenthos of sandy substrate habitats (C&B-SS), shows that the performance of a model does not depend on whether it was developed for a specific taxonomic group. Moreover, since some widely used models (e.g., the Robertson model) show very different responses when applied to the macrofauna of different marine environments (e.g., sandy beaches and estuaries), prior evaluation of these models is essential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Refractory frontal lobe epilepsy (FLE) remains one of the most challenging surgically remediable epilepsy syndromes. Nevertheless, definition of independent predictors and predictive models of postsurgical seizure outcome remains poorly explored in FLE. Methods: We retrospectively analyzed data from 70 consecutive patients with refractory FLE submitted to surgical treatment at our center from July 1994 to December 2006. Univariate results were submitted to logistic regression models and Cox proportional hazards regression to identify isolated risk factors for poor surgical results and to construct predictive models for surgical outcome in FLE. Results: From 70 patients submitted to surgery, 45 patients (64%) had favorable outcome and 37 (47%) became seizure free. Isolated risk factors for poor surgical outcome are expressed in hazard ratio (H.R.) and were time of epilepsy (H.R.=4.2; 95% C.I.=.1.5-11.7; p=0.006), ictal EEG recruiting rhythm (H.R. = 2.9; 95% C.I. = 1.1-7.7; p=0.033); normal MRI (H.R. = 4.8; 95% C.I. = 1.4-16.6; p = 0.012), and MRI with lesion involving eloquent cortex (H.R. = 3.8; 95% C.I. = 1.2-12.0; p = 0.021). Based on these variables and using a logistic regression model we constructed a model that correctly predicted long-term surgical outcome in up to 80% of patients. Conclusion: Among independent risk factors for postsurgical seizure outcome, epilepsy duration is a potentially modifiable factor that could impact surgical outcome in FLE. Early diagnosis, presence of an MRI lesion not involving eloquent cortex, and ictal EEG without recruited rhythm independently predicted favorable outcome in this series. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In humans and other mammals, sperm morphology has been considered one of the most important predictive parameters of fertility. The objective was to determine the presence and distribution of sperm head morphometric subpopulations in a nonhuman primate model (Callithrix jacchus), using an objective computer analysis system and principal component analysis (PCA) methods to establish the relationship between the subpopulation distribution observed and among-donor variation. The PCA method revealed a stable number of principal components in all donors studied, that represented more than 85% of the cumulative variance in all cases. After cluster analysis, a variable number (from three to seven) sperm morphometric subpopulations were identified with defined sperm dimensions and shapes. There were differences in the distribution of the sperm morphometric subpopulations (P < 0.001) in all ejaculates among the four donors analyzed. In conclusion, in this study, computerized sperm analysis methods combined with PCA cluster analyses were useful to identify, classify, and characterize various head sperm morphometric subpopulations in nonhuman primates, yielding considerable biological information. In addition, because all individuals were kept in the same conditions, differences in the distribution of these subpopulations were not attributed to external or management factors. Finally, the substantial information derived from subpopulation analyses provided new and relevant biological knowledge which may have a practical use for future studies in human and nonhuman primate ejaculates, including identifying individuals more suitable for assisted reproductive technologies. (c) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Patients under haemodialysis are considered at high risk to acquire hepatitis B virus (HBV) infection. Since few data are reported from Brazil, our aim was to assess the frequency and risk factors for HBV infection in haemodialysis patients from 22 Dialysis Centres from Santa Catarina State, south of Brazil. Methods This study includes 813 patients, 149 haemodialysis workers and 772 healthy controls matched by sex and age. Serum samples were assayed for HBV markers and viraemia was detected by nested PCR. HBV was genotyped by partial S gene sequencing. Univariate and multivariate statistical analyses with stepwise logistic regression analysis were carried out to analyse the relationship between HBV infection and the characteristics of patients and their Dialysis Units. Results Frequency of HBV infection was 10.0%, 2.7% and 2.7% among patients, haemodialysis workers and controls, respectively. Amidst patients, the most frequent HBV genotypes were A (30.6%), D (57.1%) and F (12.2%). Univariate analysis showed association between HBV infection and total time in haemodialysis, type of dialysis equipment, hygiene and sterilization of equipment, number of times reusing the dialysis lines and filters, number of patients per care-worker and current HCV infection. The logistic regression model showed that total time in haemodialysis, number of times of reusing the dialysis lines and filters, and number of patients per worker were significantly related to HBV infection. Conclusions Frequency of HBV infection among haemodialysis patients at Santa Catarina state is very high. The most frequent HBV genotypes were A, D and F. The risk for a patient to become HBV positive increase 1.47 times each month of haemodialysis; 1.96 times if the dialysis unit reuses the lines and filters ≥ 10 times compared with haemodialysis units which reuse < 10 times; 3.42 times if the number of patients per worker is more than five. Sequence similarity among the HBV S gene from isolates of different patients pointed out to nosocomial transmission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Allogeneic red blood cell (RBC) transfusion has been proposed as a negative indicator of quality in cardiac surgery. Hospital length of stay (LOS) may be a surrogate of poor outcome in transfused patients. Methods Data from 502 patients included in Transfusion Requirements After Cardiac Surgery (TRACS) study were analyzed to assess the relationship between RBC transfusion and hospital LOS in patients undergoing cardiac surgery and enrolled in the TRACS study. Results According to the status of RBC transfusion, patients were categorized into the following three groups: 1) 199 patients (40%) who did not receive RBC, 2) 241 patients (48%) who received 3 RBC units or fewer (low transfusion requirement group), and 3) 62 patients (12%) who received more than 3 RBC units (high transfusion requirement group). In a multivariable Cox proportional hazards model, the following factors were predictive of a prolonged hospital length of stay: age higher than 65 years, EuroSCORE, valvular surgery, combined procedure, LVEF lower than 40% and RBC transfusion of > 3 units. Conclusion RBC transfusion is an independent risk factor for increased LOS in patients undergoing cardiac surgery. This finding highlights the adequacy of a restrictive transfusion therapy in patients undergoing cardiac surgery. Trial registration Clinicaltrials.gov identifier: http://NCT01021631.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presented study carried out an analysis on rural landscape changes. In particular the study focuses on the understanding of driving forces acting on the rural built environment using a statistical spatial model implemented through GIS techniques. It is well known that the study of landscape changes is essential for a conscious decision making in land planning. From a bibliography review results a general lack of studies dealing with the modeling of rural built environment and hence a theoretical modelling approach for such purpose is needed. The advancement in technology and modernity in building construction and agriculture have gradually changed the rural built environment. In addition, the phenomenon of urbanization of a determined the construction of new volumes that occurred beside abandoned or derelict rural buildings. Consequently there are two types of transformation dynamics affecting mainly the rural built environment that can be observed: the conversion of rural buildings and the increasing of building numbers. It is the specific aim of the presented study to propose a methodology for the development of a spatial model that allows the identification of driving forces that acted on the behaviours of the building allocation. In fact one of the most concerning dynamic nowadays is related to an irrational expansion of buildings sprawl across landscape. The proposed methodology is composed by some conceptual steps that cover different aspects related to the development of a spatial model: the selection of a response variable that better describe the phenomenon under study, the identification of possible driving forces, the sampling methodology concerning the collection of data, the most suitable algorithm to be adopted in relation to statistical theory and method used, the calibration process and evaluation of the model. A different combination of factors in various parts of the territory generated favourable or less favourable conditions for the building allocation and the existence of buildings represents the evidence of such optimum. Conversely the absence of buildings expresses a combination of agents which is not suitable for building allocation. Presence or absence of buildings can be adopted as indicators of such driving conditions, since they represent the expression of the action of driving forces in the land suitability sorting process. The existence of correlation between site selection and hypothetical driving forces, evaluated by means of modeling techniques, provides an evidence of which driving forces are involved in the allocation dynamic and an insight on their level of influence into the process. GIS software by means of spatial analysis tools allows to associate the concept of presence and absence with point futures generating a point process. Presence or absence of buildings at some site locations represent the expression of these driving factors interaction. In case of presences, points represent locations of real existing buildings, conversely absences represent locations were buildings are not existent and so they are generated by a stochastic mechanism. Possible driving forces are selected and the existence of a causal relationship with building allocations is assessed through a spatial model. The adoption of empirical statistical models provides a mechanism for the explanatory variable analysis and for the identification of key driving variables behind the site selection process for new building allocation. The model developed by following the methodology is applied to a case study to test the validity of the methodology. In particular the study area for the testing of the methodology is represented by the New District of Imola characterized by a prevailing agricultural production vocation and were transformation dynamic intensively occurred. The development of the model involved the identification of predictive variables (related to geomorphologic, socio-economic, structural and infrastructural systems of landscape) capable of representing the driving forces responsible for landscape changes.. The calibration of the model is carried out referring to spatial data regarding the periurban and rural area of the study area within the 1975-2005 time period by means of Generalised linear model. The resulting output from the model fit is continuous grid surface where cells assume values ranged from 0 to 1 of probability of building occurrences along the rural and periurban area of the study area. Hence the response variable assesses the changes in the rural built environment occurred in such time interval and is correlated to the selected explanatory variables by means of a generalized linear model using logistic regression. Comparing the probability map obtained from the model to the actual rural building distribution in 2005, the interpretation capability of the model can be evaluated. The proposed model can be also applied to the interpretation of trends which occurred in other study areas, and also referring to different time intervals, depending on the availability of data. The use of suitable data in terms of time, information, and spatial resolution and the costs related to data acquisition, pre-processing, and survey are among the most critical aspects of model implementation. Future in-depth studies can focus on using the proposed model to predict short/medium-range future scenarios for the rural built environment distribution in the study area. In order to predict future scenarios it is necessary to assume that the driving forces do not change and that their levels of influence within the model are not far from those assessed for the time interval used for the calibration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sudden cardiac death due to ventricular arrhythmia is one of the leading causes of mortality in the world. In the last decades, it has proven that anti-arrhythmic drugs, which prolong the refractory period by means of prolongation of the cardiac action potential duration (APD), play a good role in preventing of relevant human arrhythmias. However, it has long been observed that the “class III antiarrhythmic effect” diminish at faster heart rates and that this phenomenon represent a big weakness, since it is the precise situation when arrhythmias are most prone to occur. It is well known that mathematical modeling is a useful tool for investigating cardiac cell behavior. In the last 60 years, a multitude of cardiac models has been created; from the pioneering work of Hodgkin and Huxley (1952), who first described the ionic currents of the squid giant axon quantitatively, mathematical modeling has made great strides. The O’Hara model, that I employed in this research work, is one of the modern computational models of ventricular myocyte, a new generation began in 1991 with ventricular cell model by Noble et al. Successful of these models is that you can generate novel predictions, suggest experiments and provide a quantitative understanding of underlying mechanism. Obviously, the drawback is that they remain simple models, they don’t represent the real system. The overall goal of this research is to give an additional tool, through mathematical modeling, to understand the behavior of the main ionic currents involved during the action potential (AP), especially underlining the differences between slower and faster heart rates. In particular to evaluate the rate-dependence role on the action potential duration, to implement a new method for interpreting ionic currents behavior after a perturbation effect and to verify the validity of the work proposed by Antonio Zaza using an injected current as a perturbing effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatial prediction of hourly rainfall via radar calibration is addressed. The change of support problem (COSP), arising when the spatial supports of different data sources do not coincide, is faced in a non-Gaussian setting; in fact, hourly rainfall in Emilia-Romagna region, in Italy, is characterized by abundance of zero values and right-skeweness of the distribution of positive amounts. Rain gauge direct measurements on sparsely distributed locations and hourly cumulated radar grids are provided by the ARPA-SIMC Emilia-Romagna. We propose a three-stage Bayesian hierarchical model for radar calibration, exploiting rain gauges as reference measure. Rain probability and amounts are modeled via linear relationships with radar in the log scale; spatial correlated Gaussian effects capture the residual information. We employ a probit link for rainfall probability and Gamma distribution for rainfall positive amounts; the two steps are joined via a two-part semicontinuous model. Three model specifications differently addressing COSP are presented; in particular, a stochastic weighting of all radar pixels, driven by a latent Gaussian process defined on the grid, is employed. Estimation is performed via MCMC procedures implemented in C, linked to R software. Communication and evaluation of probabilistic, point and interval predictions is investigated. A non-randomized PIT histogram is proposed for correctly assessing calibration and coverage of two-part semicontinuous models. Predictions obtained with the different model specifications are evaluated via graphical tools (Reliability Plot, Sharpness Histogram, PIT Histogram, Brier Score Plot and Quantile Decomposition Plot), proper scoring rules (Brier Score, Continuous Rank Probability Score) and consistent scoring functions (Root Mean Square Error and Mean Absolute Error addressing the predictive mean and median, respectively). Calibration is reached and the inclusion of neighbouring information slightly improves predictions. All specifications outperform a benchmark model with incorrelated effects, confirming the relevance of spatial correlation for modeling rainfall probability and accumulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Falls are common and burdensome accidents among the elderly. About one third of the population aged 65 years or more experience at least one fall each year. Fall risk assessment is believed to be beneficial for fall prevention. This thesis is about prognostic tools for falls for community-dwelling older adults. We provide an overview of the state of the art. We then take different approaches: we propose a theoretical probabilistic model to investigate some properties of prognostic tools for falls; we present a tool whose parameters were derived from data of the literature; we train and test a data-driven prognostic tool. Finally, we present some preliminary results on prediction of falls through features extracted from wearable inertial sensors. Heterogeneity in validation results are expected from theoretical considerations and are observed from empirical data. Differences in studies design hinder comparability and collaborative research. According to the multifactorial etiology of falls, assessment on multiple risk factors is needed in order to achieve good predictive accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20\% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The PM3 semiempirical quantum-mechanical method was found to systematically describe intermolecular hydrogen bonding in small polar molecules. PM3 shows charge transfer from the donor to acceptor molecules on the order of 0.02-0.06 units of charge when strong hydrogen bonds are formed. The PM3 method is predictive; calculated hydrogen bond energies with an absolute magnitude greater than 2 kcal mol-' suggest that the global minimum is a hydrogen bonded complex; absolute energies less than 2 kcal mol-' imply that other van der Waals complexes are more stable. The geometries of the PM3 hydrogen bonded complexes agree with high-resolution spectroscopic observations, gas electron diffraction data, and high-level ab initio calculations. The main limitations in the PM3 method are the underestimation of hydrogen bond lengths by 0.1-0.2 for some systems and the underestimation of reliable experimental hydrogen bond energies by approximately 1-2 kcal mol-l. The PM3 method predicts that ammonia is a good hydrogen bond acceptor and a poor hydrogen donor when interacting with neutral molecules. Electronegativity differences between F, N, and 0 predict that donor strength follows the order F > 0 > N and acceptor strength follows the order N > 0 > F. In the calculations presented in this article, the PM3 method mirrors these electronegativity differences, predicting the F-H- - -N bond to be the strongest and the N-H- - -F bond the weakest. It appears that the PM3 Hamiltonian is able to model hydrogen bonding because of the reduction of two-center repulsive forces brought about by the parameterization of the Gaussian core-core interactions. The ability of the PM3 method to model intermolecular hydrogen bonding means reasonably accurate quantum-mechanical calculations can be applied to small biologic systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a mechanistic modeling methodology to predict both the percolation threshold and effective conductivity of infiltrated Solid Oxide Fuel Cell (SOFC) electrodes. The model has been developed to mirror each step of the experimental fabrication process. The primary model output is the infiltrated electrode effective conductivity which provides results over a range of infiltrate loadings that are independent of the chosen electronically conducting material. The percolation threshold is utilized as a valuable output data point directly related to the effective conductivity to compare a wide range of input value choices. The predictive capability of the model is demonstrated by favorable comparison to two separate published experimental studies, one using strontium molybdate and one using La0.8Sr0.2FeO3-δ as infiltrate materials. Effective conductivities and percolation thresholds are shown for varied infiltrate particle size, pore size, and porosity with the infiltrate particle size having the largest impact on the results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a mechanistic modeling methodology to predict both the percolation threshold and effective conductivity of infiltrated Solid Oxide Fuel Cell (SOFC) electrodes. The model has been developed to mirror each step of the experimental fabrication process. The primary model output is the infiltrated electrode effective conductivity which provides results over a range of infiltrate loadings that are independent of the chosen electronically conducting material. The percolation threshold is utilized as a valuable output data point directly related to the effective conductivity to compare a wide range of input value choices. The predictive capability of the model is demonstrated by favorable comparison to two separate published experimental studies, one using strontium molybdate and one using La0.8Sr0.2FeO3-delta as infiltrate materials. Effective conductivities and percolation thresholds are shown for varied infiltrate particle size, pore size, and porosity with the infiltrate particle size having the largest impact on the results. (C) 2013 The Electrochemical Society. All rights reserved.