362 resultados para Multicellular Spheroid
Resumo:
There is a lot of interest to optimize aquaculture production due to its overexploitation of marine resources, ocean pollution and habitat destruction. Since feed production is one of the greatest issues in aquaculture, feeding strategy optimization is important. The study of several different feed additives or supplementation is important to secure optimal growth, gut health, and function in farmed fish. Feed additives are typically supplied to ensure good health and to help the animal ward off pathogens during both normal and challenging conditions, which could stress animals and promote insurgence of pathologies or pathogens invasions. In this context has an increasing interest the study of host associated microbiome to understand the influence of novel functional feed on the health and physiology of animals. To achieve a more sustainable aquaculture sector, show a great importance the understanding of the environmental impact of this human activity in terms of habitat destruction, ocean pollution and reduction marine environments biodiversity. Marine microbiomes, either free-living or associated with multicellular hosts, is acquiring an increasing interest because their role in supporting the functioning and biodiversity of marine ecosystems, providing essential ecological services. Becoming extremely important to understand how these activities can affect marine microbiomes by altering their function and diversity. In this thesis work, we were able to present a comprehensive evaluation of different functional feeds assessing their effects in terms of growth and gut health of three fish species, Rainbow Trout (Oncorhynchus mykiss), Gilthead seabream (Sparus aurata) and Zebrafish (Danio rerio). We also explored the impact of Aquaculture on the surrounding marine microbiomes, using Patella caerulea as a model holobionts. Finally, we provided a synoptical study on the microbiomes of the water column and surface sediments in North-Western Adriatic Sea (Italy), providing the finest-scale mapping of marine microbiomes in the Mediterranean Sea.
Resumo:
Dwarf galaxies often experience gravitational interactions from more massive companions. These interactions can deform galaxies, turn star formation on or off, or give rise to mass loss phenomena. In this thesis work we propose to study, through N-body simulations, the stellar mass loss suffered by the dwarf spheroid galaxy (dSph) Fornax orbiting in the Milky Way gravitational potential. Which is a key phenomenon to explain the mass budget problem: the Fornax globular clusters together have a stellar mass comparable to that of Fornax itself. If we look at the stellar populations which they are made of and we apply the scenarios of stellar population formation we find that, originally, they must have been >= 5 times more massive. For this reason, they must have lost or ejected stars through dynamic interactions. However, as presented in Larsen et al (2012), field stars alone are not sufficient to explain this scenario. We may assume that some of those stars fell into Fornax, and later were stripped by Milky Way. In order to study this solution we built several illustrative single component simulations, with a tabulated density model using the P07ecc orbit studied from Battaglia et al (2015). To divide the single component into stellar and dark matter components we have defined a posterior the probability function P(E), where E is the initial energy distribution of the particles. By associating each particle with a fraction of stellar mass and dark matter. In this way we built stellar density profiles without repeating simulations. We applied the method to Fornax using the profile density tables obtained in Pascale et al (2018) as observational constraints and to build the model. The results confirm the results previously obtained with less flexible models by Battaglia et al (2015). They show a stellar mass loss < 4% within 1.6 kpc and negligible within 3 kpc, too small to solve the mass budget problem.