892 resultados para Multi-extremal Objective Function


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper proposes a methodology to consider the effects of the integration of DG on planning. Since DG has potential to defer investments in networks, the impact of DG on grid capacity is evaluated. A multi-objective optimization tool based on the meta-heuristic MEPSO is used, supporting an alternative approach to exploiting the Pareto front features. Tests were performed in distinct conditions with two well-known distribution networks: IEEE-34 and IEEE-123. The results combined minimization and maximization in order to produce different Pareto fronts and determine the extent of the impact caused by DG. The analysis provides useful information, such as the identification of futures that should be considered in planning. A future means a set of realizations of all uncertainties. MEPSO also presented a satisfactory performance in obtaining the Pareto fronts. © 2011 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Current SoC design trends are characterized by the integration of larger amount of IPs targeting a wide range of application fields. Such multi-application systems are constrained by a set of requirements. In such scenario network-on-chips (NoC) are becoming more important as the on-chip communication structure. Designing an optimal NoC for satisfying the requirements of each individual application requires the specification of a large set of configuration parameters leading to a wide solution space. It has been shown that IP mapping is one of the most critical parameters in NoC design, strongly influencing the SoC performance. IP mapping has been solved for single application systems using single and multi-objective optimization algorithms. In this paper we propose the use of a multi-objective adaptive immune algorithm (M(2)AIA), an evolutionary approach to solve the multi-application NoC mapping problem. Latency and power consumption were adopted as the target multi-objective functions. To compare the efficiency of our approach, our results are compared with those of the genetic and branch and bound multi-objective mapping algorithms. We tested 11 well-known benchmarks, including random and real applications, and combines up to 8 applications at the same SoC. The experimental results showed that the M(2)AIA decreases in average the power consumption and the latency 27.3 and 42.1 % compared to the branch and bound approach and 29.3 and 36.1 % over the genetic approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Network reconfiguration for service restoration (SR) in distribution systems is a complex optimization problem. For large-scale distribution systems, it is computationally hard to find adequate SR plans in real time since the problem is combinatorial and non-linear, involving several constraints and objectives. Two Multi-Objective Evolutionary Algorithms that use Node-Depth Encoding (NDE) have proved able to efficiently generate adequate SR plans for large distribution systems: (i) one of them is the hybridization of the Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) with NDE, named NSGA-N; (ii) the other is a Multi-Objective Evolutionary Algorithm based on subpopulation tables that uses NDE, named MEAN. Further challenges are faced now, i.e. the design of SR plans for larger systems as good as those for relatively smaller ones and for multiple faults as good as those for one fault (single fault). In order to tackle both challenges, this paper proposes a method that results from the combination of NSGA-N, MEAN and a new heuristic. Such a heuristic focuses on the application of NDE operators to alarming network zones according to technical constraints. The method generates similar quality SR plans in distribution systems of significantly different sizes (from 3860 to 30,880 buses). Moreover, the number of switching operations required to implement the SR plans generated by the proposed method increases in a moderate way with the number of faults.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Due to its practical importance and inherent complexity, the optimisation of distribution networks for supplying drinking water has been the subject of extensive study for the past 30 years. The optimization is governed by sizing the pipes in the water distribution network (WDN) and / or optimises specific parts of the network such as pumps, tanks etc. or try to analyse and optimise the reliability of a WDN. In this thesis, the author has analysed two different WDNs (Anytown City and Cabrera city networks), trying to solve and optimise a multi-objective optimisation problem (MOOP). The main two objectives in both cases were the minimisation of Energy Cost (€) or Energy consumption (kWh), along with the total Number of pump switches (TNps) during a day. For this purpose, a decision support system generator for Multi-objective optimisation used. Its name is GANetXL and has been developed by the Center of Water System in the University of Exeter. GANetXL, works by calling the EPANET hydraulic solver, each time a hydraulic analysis has been fulfilled. The main algorithm used, was a second-generation algorithm for multi-objective optimisation called NSGA_II that gave us the Pareto fronts of each configuration. The first experiment that has been carried out was the network of Anytown city. It is a big network with a pump station of four fixed speed parallel pumps that are boosting the water dynamics. The main intervention was to change these pumps to new Variable speed driven pumps (VSDPs), by installing inverters capable to diverse their velocity during the day. Hence, it’s been achieved great Energy and cost savings along with minimisation in the number of pump switches. The results of the research are thoroughly illustrated in chapter 7, with comments and a variety of graphs and different configurations. The second experiment was about the network of Cabrera city. The smaller WDN had a unique FS pump in the system. The problem was the same as far as the optimisation process was concerned, thus, the minimisation of the energy consumption and in parallel the minimisation of TNps. The same optimisation tool has been used (GANetXL).The main scope was to carry out several and different experiments regarding a vast variety of configurations, using different pump (but this time keeping the FS mode), different tank levels, different pipe diameters and different emitters coefficient. All these different modes came up with a large number of results that were compared in the chapter 8. Concluding, it should be said that the optimisation of WDNs is a very interested field that has a vast space of options to deal with. This includes a large number of algorithms to choose from, different techniques and configurations to be made and different support system generators. The researcher has to be ready to “roam” between these choices, till a satisfactory result will convince him/her that has reached a good optimisation point.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Master production schedule (MPS) plays an important role in an integrated production planning system. It converts the strategic planning defined in a production plan into the tactical operation execution. The MPS is also known as a tool for top management to control over manufacture resources and becomes input of the downstream planning levels such as material requirement planning (MRP) and capacity requirement planning (CRP). Hence, inappropriate decision on the MPS development may lead to infeasible execution, which ultimately causes poor delivery performance. One must ensure that the proposed MPS is valid and realistic for implementation before it is released to real manufacturing system. In practice, where production environment is stochastic in nature, the development of MPS is no longer simple task. The varying processing time, random event such as machine failure is just some of the underlying causes of uncertainty that may be hardly addressed at planning stage so that in the end the valid and realistic MPS is tough to be realized. The MPS creation problem becomes even more sophisticated as decision makers try to consider multi-objectives; minimizing inventory, maximizing customer satisfaction, and maximizing resource utilization. This study attempts to propose a methodology for MPS creation which is able to deal with those obstacles. This approach takes into account uncertainty and makes trade off among conflicting multi-objectives at the same time. It incorporates fuzzy multi-objective linear programming (FMOLP) and discrete event simulation (DES) for MPS development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cost-efficient operation while satisfying performance and availability guarantees in Service Level Agreements (SLAs) is a challenge for Cloud Computing, as these are potentially conflicting objectives. We present a framework for SLA management based on multi-objective optimization. The framework features a forecasting model for determining the best virtual machine-to-host allocation given the need to minimize SLA violations, energy consumption and resource wasting. A comprehensive SLA management solution is proposed that uses event processing for monitoring and enables dynamic provisioning of virtual machines onto the physical infrastructure. We validated our implementation against serveral standard heuristics and were able to show that our approach is significantly better.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In several regions of the world, climate change is expected to have severe impacts on agricultural systems. Changes in land management are one way to adapt to future climatic conditions, including land-use changes and local adjustments of agricultural practices. In previous studies, options for adaptation have mostly been explored by testing alternative scenarios. Systematic explorations of land management possibilities using optimization approaches were so far mainly restricted to studies of land and resource management under constant climatic conditions. In this study, we bridge this gap and exploit the benefits of multi-objective regional optimization for identifying optimum land management adaptations to climate change. We design a multi-objective optimization routine that integrates a generic crop model and considers two climate scenarios for 2050 in a meso-scale catchment on the Swiss Central Plateau with already limited water resources. The results indicate that adaptation will be necessary in the study area to cope with a decrease in productivity by 0–10 %, an increase in soil loss by 25–35 %, and an increase in N-leaching by 30–45 %. Adaptation options identified here exhibit conflicts between productivity and environmental goals, but compromises are possible. Necessary management changes include (i) adjustments of crop shares, i.e. increasing the proportion of early harvested winter cereals at the expense of irrigated spring crops, (ii) widespread use of reduced tillage, (iii) allocation of irrigated areas to soils with low water-retention capacity at lower elevations, and (iv) conversion of some pre-alpine grasslands to croplands.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND High-risk prostate cancer (PCa) is an extremely heterogeneous disease. A clear definition of prognostic subgroups is mandatory. OBJECTIVE To develop a pretreatment prognostic model for PCa-specific survival (PCSS) in high-risk PCa based on combinations of unfavorable risk factors. DESIGN, SETTING, AND PARTICIPANTS We conducted a retrospective multicenter cohort study including 1360 consecutive patients with high-risk PCa treated at eight European high-volume centers. INTERVENTION Retropubic radical prostatectomy with pelvic lymphadenectomy. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Two Cox multivariable regression models were constructed to predict PCSS as a function of dichotomization of clinical stage (< cT3 vs cT3-4), Gleason score (GS) (2-7 vs 8-10), and prostate-specific antigen (PSA; ≤ 20 ng/ml vs > 20 ng/ml). The first "extended" model includes all seven possible combinations; the second "simplified" model includes three subgroups: a good prognosis subgroup (one single high-risk factor); an intermediate prognosis subgroup (PSA >20 ng/ml and stage cT3-4); and a poor prognosis subgroup (GS 8-10 in combination with at least one other high-risk factor). The predictive accuracy of the models was summarized and compared. Survival estimates and clinical and pathologic outcomes were compared between the three subgroups. RESULTS AND LIMITATIONS The simplified model yielded an R(2) of 33% with a 5-yr area under the curve (AUC) of 0.70 with no significant loss of predictive accuracy compared with the extended model (R(2): 34%; AUC: 0.71). The 5- and 10-yr PCSS rates were 98.7% and 95.4%, 96.5% and 88.3%, 88.8% and 79.7%, for the good, intermediate, and poor prognosis subgroups, respectively (p = 0.0003). Overall survival, clinical progression-free survival, and histopathologic outcomes significantly worsened in a stepwise fashion from the good to the poor prognosis subgroups. Limitations of the study are the retrospective design and the long study period. CONCLUSIONS This study presents an intuitive and easy-to-use stratification of high-risk PCa into three prognostic subgroups. The model is useful for counseling and decision making in the pretreatment setting.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Assays measuring platelet aggregation (thrombus formation) at arterial shear rate mostly use collagen as only platelet-adhesive surface. Here we report a multi-surface and multi-parameter flow assay to characterize thrombus formation in whole blood from healthy subjects and patients with platelet function deficiencies. A systematic comparison is made of 52 adhesive surfaces with components activating the main platelet-adhesive receptors, and of eight output parameters reflecting distinct stages of thrombus formation. Three types of thrombus formation can be identified with a predicted hierarchy of the following receptors: glycoprotein (GP)VI, C-type lectin-like receptor-2 (CLEC-2)>GPIb>α6β1, αIIbβ3>α2β1>CD36, α5β1, αvβ3. Application with patient blood reveals distinct abnormalities in thrombus formation in patients with severe combined immune deficiency, Glanzmann's thrombasthenia, Hermansky-Pudlak syndrome, May-Hegglin anomaly or grey platelet syndrome. We suggest this test may be useful for the diagnosis of patients with suspected bleeding disorders or a pro-thrombotic tendency.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE Cochlear implants (CIs) have become the gold standard treatment for deafness. These neuroprosthetic devices feature a linear electrode array, surgically inserted into the cochlea, and function by directly stimulating the auditory neurons located within the spiral ganglion, bypassing lost or not-functioning hair cells. Despite their success, some limitations still remain, including poor frequency resolution and high-energy consumption. In both cases, the anatomical gap between the electrode array and the spiral ganglion neurons (SGNs) is believed to be an important limiting factor. The final goal of the study is to characterize response profiles of SGNs growing in intimate contact with an electrode array, in view of designing novel CI devices and stimulation protocols, featuring a gapless interface with auditory neurons. APPROACH We have characterized SGN responses to extracellular stimulation using multi-electrode arrays (MEAs). This setup allows, in our view, to optimize in vitro many of the limiting interface aspects between CIs and SGNs. MAIN RESULTS Early postnatal mouse SGN explants were analyzed after 6-18 days in culture. Different stimulation protocols were compared with the aim to lower the stimulation threshold and the energy needed to elicit a response. In the best case, a four-fold reduction of the energy was obtained by lengthening the biphasic stimulus from 40 μs to 160 μs. Similarly, quasi monophasic pulses were more effective than biphasic pulses and the insertion of an interphase gap moderately improved efficiency. Finally, the stimulation with an external electrode mounted on a micromanipulator showed that the energy needed to elicit a response could be reduced by a factor of five with decreasing its distance from 40 μm to 0 μm from the auditory neurons. SIGNIFICANCE This study is the first to show electrical activity of SGNs on MEAs. Our findings may help to improve stimulation by and to reduce energy consumption of CIs and thereby contribute to the development of fully implantable devices with better auditory resolution in the future.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a parallel surrogate-based global optimization method for computationally expensive objective functions that is more effective for larger numbers of processors. To reach this goal, we integrated concepts from multi-objective optimization and tabu search into, single objective, surrogate optimization. Our proposed derivative-free algorithm, called SOP, uses non-dominated sorting of points for which the expensive function has been previously evaluated. The two objectives are the expensive function value of the point and the minimum distance of the point to previously evaluated points. Based on the results of non-dominated sorting, P points from the sorted fronts are selected as centers from which many candidate points are generated by random perturbations. Based on surrogate approximation, the best candidate point is subsequently selected for expensive evaluation for each of the P centers, with simultaneous computation on P processors. Centers that previously did not generate good solutions are tabu with a given tenure. We show almost sure convergence of this algorithm under some conditions. The performance of SOP is compared with two RBF based methods. The test results show that SOP is an efficient method that can reduce time required to find a good near optimal solution. In a number of cases the efficiency of SOP is so good that SOP with 8 processors found an accurate answer in less wall-clock time than the other algorithms did with 32 processors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper proposes a new multi-objective estimation of distribution algorithm (EDA) based on joint modeling of objectives and variables. This EDA uses the multi-dimensional Bayesian network as its probabilistic model. In this way it can capture the dependencies between objectives, variables and objectives, as well as the dependencies learnt between variables in other Bayesian network-based EDAs. This model leads to a problem decomposition that helps the proposed algorithm to find better trade-off solutions to the multi-objective problem. In addition to Pareto set approximation, the algorithm is also able to estimate the structure of the multi-objective problem. To apply the algorithm to many-objective problems, the algorithm includes four different ranking methods proposed in the literature for this purpose. The algorithm is applied to the set of walking fish group (WFG) problems, and its optimization performance is compared with an evolutionary algorithm and another multi-objective EDA. The experimental results show that the proposed algorithm performs significantly better on many of the problems and for different objective space dimensions, and achieves comparable results on some compared with the other algorithms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recent decades, there has been an increasing interest in systems comprised of several autonomous mobile robots, and as a result, there has been a substantial amount of development in the eld of Articial Intelligence, especially in Robotics. There are several studies in the literature by some researchers from the scientic community that focus on the creation of intelligent machines and devices capable to imitate the functions and movements of living beings. Multi-Robot Systems (MRS) can often deal with tasks that are dicult, if not impossible, to be accomplished by a single robot. In the context of MRS, one of the main challenges is the need to control, coordinate and synchronize the operation of multiple robots to perform a specic task. This requires the development of new strategies and methods which allow us to obtain the desired system behavior in a formal and concise way. This PhD thesis aims to study the coordination of multi-robot systems, in particular, addresses the problem of the distribution of heterogeneous multi-tasks. The main interest in these systems is to understand how from simple rules inspired by the division of labor in social insects, a group of robots can perform tasks in an organized and coordinated way. We are mainly interested on truly distributed or decentralized solutions in which the robots themselves, autonomously and in an individual manner, select a particular task so that all tasks are optimally distributed. In general, to perform the multi-tasks distribution among a team of robots, they have to synchronize their actions and exchange information. Under this approach we can speak of multi-tasks selection instead of multi-tasks assignment, which means, that the agents or robots select the tasks instead of being assigned a task by a central controller. The key element in these algorithms is the estimation ix of the stimuli and the adaptive update of the thresholds. This means that each robot performs this estimate locally depending on the load or the number of pending tasks to be performed. In addition, it is very interesting the evaluation of the results in function in each approach, comparing the results obtained by the introducing noise in the number of pending loads, with the purpose of simulate the robot's error in estimating the real number of pending tasks. The main contribution of this thesis can be found in the approach based on self-organization and division of labor in social insects. An experimental scenario for the coordination problem among multiple robots, the robustness of the approaches and the generation of dynamic tasks have been presented and discussed. The particular issues studied are: Threshold models: It presents the experiments conducted to test the response threshold model with the objective to analyze the system performance index, for the problem of the distribution of heterogeneous multitasks in multi-robot systems; also has been introduced additive noise in the number of pending loads and has been generated dynamic tasks over time. Learning automata methods: It describes the experiments to test the learning automata-based probabilistic algorithms. The approach was tested to evaluate the system performance index with additive noise and with dynamic tasks generation for the same problem of the distribution of heterogeneous multi-tasks in multi-robot systems. Ant colony optimization: The goal of the experiments presented is to test the ant colony optimization-based deterministic algorithms, to achieve the distribution of heterogeneous multi-tasks in multi-robot systems. In the experiments performed, the system performance index is evaluated by introducing additive noise and dynamic tasks generation over time.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper addresses the question of maximizing classifier accuracy for classifying task-related mental activity from Magnetoencelophalography (MEG) data. We propose the use of different sources of information and introduce an automatic channel selection procedure. To determine an informative set of channels, our approach combines a variety of machine learning algorithms: feature subset selection methods, classifiers based on regularized logistic regression, information fusion, and multiobjective optimization based on probabilistic modeling of the search space. The experimental results show that our proposal is able to improve classification accuracy compared to approaches whose classifiers use only one type of MEG information or for which the set of channels is fixed a priori.