884 resultados para Molecular-dynamics Simulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biased agonism of the G protein-coupled receptors (GPCRs), where in addition to a traditional G protein-signalling pathway a GPCR promotes intracellular signals though ß-arrestin, is a novel paradigm in pharmacology. Biochemical and biophysical studies have suggested that a GPCR forms a distinct ensemble of conformations signalling through the G protein and ß-arrestin. Here we report on the dynamics of the ß2 adrenergic receptor bound to the ß-arrestin and G protein biased agonists and the empty receptor to further characterize the receptor conformational changes caused by biased agonists. We use conventional and accelerated molecular dynamics (aMD) simulations to explore the conformational transitions of the GPCR from the active state to the inactive state. We found that aMD simulations enable monitoring the transition within the nanosecond timescale while capturing the known microscopic characteristics of the inactive states, such as the ionic lock, the inward position of F6.44, and water clusters. Distinct conformational states are shown to be stabilized by each biased agonist. In particular, in simulations of the receptor with the ß-arrestin biased agonist, N-cyclopentylbutanepherine we observe a different pattern of motions in helix 7 when compared to simulations with the G protein biased agonist, Salbutamol that involves perturbations of the network of interactions within the NPxxY motif. Understanding the network of interactions induced by biased ligands and the subsequent receptor conformational shifts will lead to development of more efficient drugs. © 2013 American Chemical Society

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The generalized Langevin equation (GLE) has been recently suggested to simulate the time evolution of classical solid and molecular systems when considering general nonequilibrium processes. In this approach, a part of the whole system (an open system), which interacts and exchanges energy with its dissipative environment, is studied. Because the GLE is derived by projecting out exactly the harmonic environment, the coupling to it is realistic, while the equations of motion are non-Markovian. Although the GLE formalism has already found promising applications, e. g., in nanotribology and as a powerful thermostat for equilibration in classical molecular dynamics simulations, efficient algorithms to solve the GLE for realistic memory kernels are highly nontrivial, especially if the memory kernels decay nonexponentially. This is due to the fact that one has to generate a colored noise and take account of the memory effects in a consistent manner. In this paper, we present a simple, yet efficient, algorithm for solving the GLE for practical memory kernels and we demonstrate its capability for the exactly solvable case of a harmonic oscillator coupled to a Debye bath.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new formulation of the correlated electron-ion dynamics (CEID) scheme, which systematically improves Ehrenfest dynamics by including quantum fluctuations around the mean-field atomic trajectories. We show that the method can simulate models of nonadiabatic electronic transitions and test it against exact integration of the time-dependent Schrodinger equation. Unlike previous formulations of CEID, the accuracy of this scheme depends on a single tunable parameter which sets the level of atomic fluctuations included. The convergence to the exact dynamics by increasing the tunable parameter is demonstrated for a model two level system. This algorithm provides a smooth description of the nonadiabatic electronic transitions which satisfies the kinematic constraints (energy and momentum conservation) and preserves quantum coherence. The applicability of this algorithm to more complex atomic systems is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using first-principles molecular dynamics simulations, we have investigated the notion that amino acids can play a protective role when DNA is exposed to excess electrons produced by ionizing radiation. In this study we focus on the interaction of glycine with the DNA nucleobase thymine. We studied thymine-glycine dimers and a condensed phase model consisting of one thymine molecule solvated in amorphous glycine. Our results show that the amino acid acts as a protective agent for the nucleobase in two ways. If the excess electron is initially captured by the thymine, then a proton is transferred in a barrier-less way from a neighboring hydrogen-bonded glycine. This stabilizes the excess electron by reducing the net partial charge on the thymine. In the second mechanism the excess electron is captured by a glycine, which acts as a electron scavenger that prevents electron localization in DNA. Both these mechanisms introduce obstacles to further reactions of the excess electron within a DNA strand, e.g. by raising the free energy barrier associated with strand breaks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The separation of enantiomers and confirmation of their absolute configurations is significant in the development of chiral drugs. The interactions between the enantiomers of chiral pyrazole derivative and polysaccharide-based chiral stationary phase cellulose tris(4-methylbenzoate) (Chiralcel OJ) in seven solvents and under different temperature were studied using molecular dynamics simulations. The results show that solvent effect has remarkable influence on the interactions. Structure analysis discloses that the different interactions between two isomers and chiral stationary phase are dependent on the nature of solvents, which may invert the elution order. The computational method in the present study can be used to predict the elution order and the absolute configurations of enantiomers in HPLC separations and therefore would be valuable in development of chiral drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molec ul ar dynamics calculations of the mean sq ua re displacement have been carried out for the alkali metals Na, K and Cs and for an fcc nearest neighbour Lennard-Jones model applicable to rare gas solids. The computations for the alkalis were done for several temperatures for temperature vol ume a swell as for the the ze r 0 pressure ze ro zero pressure volume corresponding to each temperature. In the fcc case, results were obtained for a wide range of both the temperature and density. Lattice dynamics calculations of the harmonic and the lowe s t order anharmonic (cubic and quartic) contributions to the mean square displacement were performed for the same potential models as in the molecular dynamics calculations. The Brillouin zone sums arising in the harmonic and the quartic terms were computed for very large numbers of points in q-space, and were extrapolated to obtain results ful converged with respect to the number of points in the Brillouin zone.An excellent agreement between the lattice dynamics results was observed molecular dynamics and in the case of all the alkali metals, e~ept for the zero pressure case of CSt where the difference is about 15 % near the melting temperature. It was concluded that for the alkalis, the lowest order perturbation theory works well even at temperat ures close to the melting temperat ure. For the fcc nearest neighbour model it was found that the number of particles (256) used for the molecular dynamics calculations, produces a result which is somewhere between 10 and 20 % smaller than the value converged with respect to the number of particles. However, the general temperature dependence of the mean square displacement is the same in molecular dynamics and lattice dynamics for all temperatures at the highest densities examined, while at higher volumes and high temperatures the results diverge. This indicates the importance of the higher order (eg. ~* ) perturbation theory contributions in these cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of most clustering algorithms is to find the optimal number of clusters (i.e. fewest number of clusters). However, analysis of molecular conformations of biological macromolecules obtained from computer simulations may benefit from a larger array of clusters. The Self-Organizing Map (SOM) clustering method has the advantage of generating large numbers of clusters, but often gives ambiguous results. In this work, SOMs have been shown to be reproducible when the same conformational dataset is independently clustered multiple times (~100), with the help of the Cramérs V-index (C_v). The ability of C_v to determine which SOMs are reproduced is generalizable across different SOM source codes. The conformational ensembles produced from MD (molecular dynamics) and REMD (replica exchange molecular dynamics) simulations of the penta peptide Met-enkephalin (MET) and the 34 amino acid protein human Parathyroid Hormone (hPTH) were used to evaluate SOM reproducibility. The training length for the SOM has a huge impact on the reproducibility. Analysis of MET conformational data definitively determined that toroidal SOMs cluster data better than bordered maps due to the fact that toroidal maps do not have an edge effect. For the source code from MATLAB, it was determined that the learning rate function should be LINEAR with an initial learning rate factor of 0.05 and the SOM should be trained by a sequential algorithm. The trained SOMs can be used as a supervised classification for another dataset. The toroidal 10×10 hexagonal SOMs produced from the MATLAB program for hPTH conformational data produced three sets of reproducible clusters (27%, 15%, and 13% of 100 independent runs) which find similar partitionings to those of smaller 6×6 SOMs. The χ^2 values produced as part of the C_v calculation were used to locate clusters with identical conformational memberships on independently trained SOMs, even those with different dimensions. The χ^2 values could relate the different SOM partitionings to each other.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La nature des acides dans un environnement aqueux est primordiale dans de nombreux aspects de la chimie et de la biologie. La caractéristique principale d'un acide est sa capacité à transférer un proton vers une molécule d'eau ou vers n'importe quelle base, mais ce procédé n'est pas aussi simple qu'il y paraît. Il peut au contraire être extrêmement complexe et dépendre de manière cruciale de la solvatation des différents intermédiaires de réaction impliqués. Cette thèse décrit les études computationnelles basées sur des simulations de dynamique moléculaire ab initio qui ont pour but d'obtenir une description à l'échelle moléculaire des divers procédés de transferts de proton entre acide et bases dans un milieu aqueux. Pour cela, nous avons étudié une serie de système, dont l'acide hydrofluorique aqueux, l'acide trifluoroacétique aqueux, et un système modèle constitué d'un phénol et d'une entité carboxylate reliés entre eux par une molécule d'eau en solution aqueuse. Deux états intermédiaires ont été identifiés pour le transfert d'un proton depuis un acide. Ces intermédiaires apparaissent stabilisés par un motif local de solvatation via des ponts H. Leurs signatures spectroscopiques ont été caractérisées au moyen de la spectroscopie infrarouge, en utilisant le formalisme de la dynamique moléculaire ab initio, qui inclut l'effet quantique nucléaire de manière explicite. Cette étude a aussi identifié trois chemins de réaction élémentaire, qui sont responsable pour le transfert d'un proton d'un acide à une base, ainsi que leurs échelles de temps caractéristiques. Les conclusions tirées de ces études sont discutées dans les détails, au niveau moléculaire, avec une emphase sur les comparaisons entre les résultats théoriques et les mesures expérimentales obtenues dans a littérature ou via des collaborateurs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ordering in a binary alloy is studied by means of a molecular-dynamics (MD) algorithm which allows to reach the domain growth regime. Results are compared with Monte Carlo simulations using a realistic vacancy-atom (MC-VA) mechanism. At low temperatures fast growth with a dynamical exponent x>1/2 is found for MD and MC-VA. The study of a nonequilibrium ordering process with the two methods shows the importance of the nonhomogeneity of the excitations in the system for determining its macroscopic kinetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis deals with some studies in molecular dynamics using spectroscopic data. Two new approximation procedures the variable method and the average bonding energy criterion have been developed for a reliable calculation of molecular force fields and applied to several molecular species belonging to the xy2 type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self- and cross-velocity correlation functions and related transport coefficients of molten salts are studied by molecular-dynamics simulation. Six representative systems are considered, i.e., NaCl and KCl alkali halides, CuCl and CuBr noble-metal halides, and SrCl2 and ZnCl2 divalent metal-ion halides. Computer simulation results are compared with experimental self-diffusion coefficients and electrical conductivities. Special attention is paid to dynamic cross correlations and their dependence on the Coulomb interactions as well as on the size and mass differences between anions and cations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The theoretical model and underlying physics described in this thesis are about the interaction of femtosecond-laser and XUV pulses with solids. The key to understand the basics of such interaction is to study the structural response of the materials after laser interaction. Depending on the laser characteristics, laser-solid interaction can result in a wide range of structural responses such as solid-solid phase transitions, vacuum phonon squeezing, ultrafast melting, generation of coherent phonons, etc. During my research work, I have modeled the systems irradiated by low-, medium- and high-laser intensities, and studied different types of structural dynamics of solids at various laser fluences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Essential and Molecular Dynamics (ED/MD) have been used to model the conformational changes of a protein implicated in a conformational disease-cataract, the largest cause of blindness in the world-after non-enzymic post-translational modification. Cyanate modification did not significantly alter flexibility, while the Schiff's base adduct produced a more flexible N-terminal domain, and intra-secondary structure regions, than either the cyanate adduct or the native structure. Glycation also increased linker flexibility and disrupted the charge network. A number of post-translational adducts showed structural disruption around Cys15 and increased linker flexibility; this may be important in subsequent protein aggregation. Our modelling results are in accord with experimental evidence, and show that ED/MD is a useful tool in modelling conformational changes in proteins implicated in disease processes. (C) 2003 Published by Elsevier Ltd.