877 resultados para Model-based geostatistics
Resumo:
Purpose. To create a binocular statistical eye model based on previously measured ocular biometric data. Methods. Thirty-nine parameters were determined for a group of 127 healthy subjects (37 male, 90 female; 96.8% Caucasian) with an average age of 39.9 ± 12.2 years and spherical equivalent refraction of −0.98 ± 1.77 D. These parameters described the biometry of both eyes and the subjects' age. Missing parameters were complemented by data from a previously published study. After confirmation of the Gaussian shape of their distributions, these parameters were used to calculate their mean and covariance matrices. These matrices were then used to calculate a multivariate Gaussian distribution. From this, an amount of random biometric data could be generated, which were then randomly selected to create a realistic population of random eyes. Results. All parameters had Gaussian distributions, with the exception of the parameters that describe total refraction (i.e., three parameters per eye). After these non-Gaussian parameters were omitted from the model, the generated data were found to be statistically indistinguishable from the original data for the remaining 33 parameters (TOST [two one-sided t tests]; P < 0.01). Parameters derived from the generated data were also significantly indistinguishable from those calculated with the original data (P > 0.05). The only exception to this was the lens refractive index, for which the generated data had a significantly larger SD. Conclusions. A statistical eye model can describe the biometric variations found in a population and is a useful addition to the classic eye models.
Resumo:
This paper presents an innovative prognostics model based on health state probability estimation embedded in the closed loop diagnostic and prognostic system. To employ an appropriate classifier for health state probability estimation in the proposed prognostic model, the comparative intelligent diagnostic tests were conducted using five different classifiers applied to the progressive fault levels of three faults in HP-LNG pump. Two sets of impeller-rubbing data were employed for the prediction of pump remnant life based on estimation of discrete health state probability using an outstanding capability of SVM and a feature selection technique. The results obtained were very encouraging and showed that the proposed prognosis system has the potential to be used as an estimation tool for machine remnant life prediction in real life industrial applications.
Resumo:
This paper presents a behavioral car-following model based on empirical trajectory data that is able to reproduce the spontaneous formation and ensuing propagation of stop-and-go waves in congested traffic. By analyzing individual drivers’ car-following behavior throughout oscillation cycles it is found that this behavior is consistent across drivers and can be captured by a simple model. The statistical analysis of the model’s parameters reveals that there is a strong correlation between driver behavior before and during the oscillation, and that this correlation should not be ignored if one is interested in microscopic output. If macroscopic outputs are of interest, simulation results indicate that an existing model with fewer parameters can be used instead. This is shown for traffic oscillations caused by rubbernecking as observed in the US 101 NGSIM dataset. The same experiment is used to establish the relationship between rubbernecking behavior and the period of oscillations.
Resumo:
Successful firms use business model innovation to rethink the way they do business and transform industries. However, current research on business model innovation is lacking theoretical underpinnings and is in need of new insights. This objective of this paper is to advance our understanding of both the business model concept and business model innovation based on service logic as foundation for customer value and value creation. We present and discuss a rationale for business models based on ‘service logic’ with service as a value-supporting process and compared it with a business model based on ‘goods logic’ with goods as value-supporting resources. The implications for each of the business model dimensions: customer, value proposition, organizational architecture and revenue model, are described and discussed in detail.
Resumo:
A number of mathematical models investigating certain aspects of the complicated process of wound healing are reported in the literature in recent years. However, effective numerical methods and supporting error analysis for the fractional equations which describe the process of wound healing are still limited. In this paper, we consider numerical simulation of fractional model based on the coupled advection-diffusion equations for cell and chemical concentration in a polar coordinate system. The space fractional derivatives are defined in the Left and Right Riemann-Liouville sense. Fractional orders in advection and diffusion terms belong to the intervals (0; 1) or (1; 2], respectively. Some numerical techniques will be used. Firstly, the coupled advection-diffusion equations are decoupled to a single space fractional advection-diffusion equation in a polar coordinate system. Secondly, we propose a new implicit difference method for simulating this equation by using the equivalent of the Riemann-Liouville and Gr¨unwald-Letnikov fractional derivative definitions. Thirdly, its stability and convergence are discussed, respectively. Finally, some numerical results are given to demonstrate the theoretical analysis.
Resumo:
The discovery of protein variation is an important strategy in disease diagnosis within the biological sciences. The current benchmark for elucidating information from multiple biological variables is the so called “omics” disciplines of the biological sciences. Such variability is uncovered by implementation of multivariable data mining techniques which come under two primary categories, machine learning strategies and statistical based approaches. Typically proteomic studies can produce hundreds or thousands of variables, p, per observation, n, depending on the analytical platform or method employed to generate the data. Many classification methods are limited by an n≪p constraint, and as such, require pre-treatment to reduce the dimensionality prior to classification. Recently machine learning techniques have gained popularity in the field for their ability to successfully classify unknown samples. One limitation of such methods is the lack of a functional model allowing meaningful interpretation of results in terms of the features used for classification. This is a problem that might be solved using a statistical model-based approach where not only is the importance of the individual protein explicit, they are combined into a readily interpretable classification rule without relying on a black box approach. Here we incorporate statistical dimension reduction techniques Partial Least Squares (PLS) and Principal Components Analysis (PCA) followed by both statistical and machine learning classification methods, and compared them to a popular machine learning technique, Support Vector Machines (SVM). Both PLS and SVM demonstrate strong utility for proteomic classification problems.
Resumo:
Traffic safety studies demand more than what current micro-simulation models can provide as they presume that all drivers exhibit safe behaviors. All the microscopic traffic simulation models include a car following model. This paper highlights the limitations of the Gipps car following model ability to emulate driver behavior for safety study purposes. A safety adapted car following model based on the Gipps car following model is proposed to simulate unsafe vehicle movements, with safety indicators below critical thresholds. The modifications are based on the observations of driver behavior in real data and also psychophysical notions. NGSIM vehicle trajectory data is used to evaluate the new model and short following headways and Time To Collision are employed to assess critical safety events within traffic flow. Risky events are extracted from available NGSIM data to evaluate the modified model against them. The results from simulation tests illustrate that the proposed model can predict the safety metrics better than the generic Gipps model. The outcome of this paper can potentially facilitate assessing and predicting traffic safety using microscopic simulation.
Resumo:
The elastic properties of 1D nanostructures such as nanowires are often measured experimentally through actuation of the nanowire at its resonance frequency, and then relating the resonance frequency to the elastic stiffness using elementary beam theory. In the present work, we utilize large scale molecular dynamics simulations to report a novel beat phenomenon in [110]oriented Ag nanowires. The beat phenomenon is found to arise from the asymmetry of the lattice spacing in the orthogonal elementary directions of the [110] nanowire, i.e. the [-110] and [001] directions, which results in two different principal moments of inertia. Because of this, actuations imposed along any other direction are found to decompose into two orthogonal vibrational components based on the actuation angle relative to these two elementary directions, with this phenomenon being generalizable to <110> FCC nanowires of different materials (Cu, Au, Ni, Pd and Pt). The beat phenomenon is explained using a discrete moment of inertia model based on the hard sphere assumption, the model is utilized to show that surface effects enhance the beat phenomenon, while the effect is reduced with increasing nanowires cross-sectional size or aspect ratio. Most importantly, due to the existence of the beat phenomena, we demonstrate that in resonance experiments only a single frequency component is expected to be observed, particularly when the damping ratio is relatively large or very small. Furthermore, for a large range of actuation angles, the lower frequency is more likely to be detected than the higher one, which implies that experimental predictions of Young’s modulus obtained from resonance may in fact be under predictions. The present study therefore has significant implications for experimental interpretations of Young’s modulus as obtained via resonance testing.
Resumo:
This paper proposes an efficient and online learning control system that uses the successful Model Predictive Control (MPC) method in a model based locally weighted learning framework. The new approach named Locally Weighted Learning Model Predictive Control (LWL-MPC) has been proposed as a solution to learn to control complex and nonlinear Elastic Joint Robots (EJR). Elastic Joint Robots are generally difficult to learn to control due to their elastic properties preventing standard model learning techniques from being used, such as learning computed torque control. This paper demonstrates the capability of LWL-MPC to perform online and incremental learning while controlling the joint positions of a real three Degree of Freedom (DoF) EJR. An experiment on a real EJR is presented and LWL-MPC is shown to successfully learn to control the system to follow two different figure of eight trajectories.
Resumo:
Assessing and prioritising cost-effective strategies to mitigate the impacts of traffic incidents and accidents on non-recurrent congestion on major roads represents a significant challenge for road network managers. This research examines the influence of numerous factors associated with incidents of various types on their duration. It presents a comprehensive traffic incident data mining and analysis by developing an incident duration model based on twelve months of incident data obtained from the Australian freeway network. Parametric accelerated failure time (AFT) survival models of incident duration were developed, including log-logistic, lognormal, and Weibul-considering both fixed and random parameters, as well as a Weibull model with gamma heterogeneity. The Weibull AFT models with random parameters were appropriate for modelling incident duration arising from crashes and hazards. A Weibull model with gamma heterogeneity was most suitable for modelling incident duration of stationary vehicles. Significant variables affecting incident duration include characteristics of the incidents (severity, type, towing requirements, etc.), and location, time of day, and traffic characteristics of the incident. Moreover, the findings reveal no significant effects of infrastructure and weather on incident duration. A significant and unique contribution of this paper is that the durations of each type of incident are uniquely different and respond to different factors. The results of this study are useful for traffic incident management agencies to implement strategies to reduce incident duration, leading to reduced congestion, secondary incidents, and the associated human and economic losses.
Resumo:
In recent years, there has been a growing interest from the design and construction community to adopt Building Information Models (BIM). BIM provides semantically-rich information models that explicitly represent both 3D geometric information (e.g., component dimensions), along with non-geometric properties (e.g., material properties). While the richness of design information offered by BIM is evident, there are still tremendous challenges in getting construction-specific information out of BIM, limiting the usability of these models for construction. In this paper, we describe our approach for extracting construction-specific design conditions from a BIM model based on user-defined queries. This approach leverages an ontology of features we are developing to formalize the design conditions that affect construction. Our current implementation analyzes the component geometry and topological relationships between components in a BIM model represented using the Industry Foundation Classes (IFC) to identify construction features. We describe the reasoning process implemented to extract these construction features, and provide a critique of the IFC’s to support the querying process. We use examples from two case studies to illustrate the construction features, the querying process, and the challenges involved in deriving construction features from an IFC model.
Resumo:
Damage assessment (damage detection, localization and quantification) in structures and appropriate retrofitting will enable the safe and efficient function of the structures. In this context, many Vibration Based Damage Identification Techniques (VBDIT) have emerged with potential for accurate damage assessment. VBDITs have achieved significant research interest in recent years, mainly due to their non-destructive nature and ability to assess inaccessible and invisible damage locations. Damage Index (DI) methods are also vibration based, but they are not based on the structural model. DI methods are fast and inexpensive compared to the model-based methods and have the ability to automate the damage detection process. DI method analyses the change in vibration response of the structure between two states so that the damage can be identified. Extensive research has been carried out to apply the DI method to assess damage in steel structures. Comparatively, there has been very little research interest in the use of DI methods to assess damage in Reinforced Concrete (RC) structures due to the complexity of simulating the predominant damage type, the flexural crack. Flexural cracks in RC beams distribute non- linearly and propagate along all directions. Secondary cracks extend more rapidly along the longitudinal and transverse directions of a RC structure than propagation of existing cracks in the depth direction due to stress distribution caused by the tensile reinforcement. Simplified damage simulation techniques (such as reductions in the modulus or section depth or use of rotational spring elements) that have been extensively used with research on steel structures, cannot be applied to simulate flexural cracks in RC elements. This highlights a big gap in knowledge and as a consequence VBDITs have not been successfully applied to damage assessment in RC structures. This research will address the above gap in knowledge and will develop and apply a modal strain energy based DI method to assess damage in RC flexural members. Firstly, this research evaluated different damage simulation techniques and recommended an appropriate technique to simulate the post cracking behaviour of RC structures. The ABAQUS finite element package was used throughout the study with properly validated material models. The damaged plasticity model was recommended as the method which can correctly simulate the post cracking behaviour of RC structures and was used in the rest of this study. Four different forms of Modal Strain Energy based Damage Indices (MSEDIs) were proposed to improve the damage assessment capability by minimising the numbers and intensities of false alarms. The developed MSEDIs were then used to automate the damage detection process by incorporating programmable algorithms. The developed algorithms have the ability to identify common issues associated with the vibration properties such as mode shifting and phase change. To minimise the effect of noise on the DI calculation process, this research proposed a sequential order of curve fitting technique. Finally, a statistical based damage assessment scheme was proposed to enhance the reliability of the damage assessment results. The proposed techniques were applied to locate damage in RC beams and slabs on girder bridge model to demonstrate their accuracy and efficiency. The outcomes of this research will make a significant contribution to the technical knowledge of VBDIT and will enhance the accuracy of damage assessment in RC structures. The application of the research findings to RC flexural members will enable their safe and efficient performance.
Resumo:
This thesis highlights the limitations of the existing car following models to emulate driver behaviour for safety study purposes. It also compares the capabilities of the mainstream car following models emulating driver behaviour precise parameters such as headways and Time to Collisions. The comparison evaluates the robustness of each car following model for safety metric reproductions. A new car following model, based on the personal space concept and fish school model is proposed to simulate more precise traffic metrics. This new model is capable of reflecting changes in the headway distribution after imposing the speed limit form VSL systems. This research facilitates assessing Intelligent Transportation Systems on motorways, using microscopic simulation.
Resumo:
This paper proposes an online learning control system that uses the strategy of Model Predictive Control (MPC) in a model based locally weighted learning framework. The new approach, named Locally Weighted Learning Model Predictive Control (LWL-MPC), is proposed as a solution to learn to control robotic systems with nonlinear and time varying dynamics. This paper demonstrates the capability of LWL-MPC to perform online learning while controlling the joint trajectories of a low cost, three degree of freedom elastic joint robot. The learning performance is investigated in both an initial learning phase, and when the system dynamics change due to a heavy object added to the tool point. The experiment on the real elastic joint robot is presented and LWL-MPC is shown to successfully learn to control the system with and without the object. The results highlight the capability of the learning control system to accommodate the lack of mechanical consistency and linearity in a low cost robot arm.
Resumo:
Many model-based investigation techniques, such as sensitivity analysis, optimization, and statistical inference, require a large number of model evaluations to be performed at different input and/or parameter values. This limits the application of these techniques to models that can be implemented in computationally efficient computer codes. Emulators, by providing efficient interpolation between outputs of deterministic simulation models, can considerably extend the field of applicability of such computationally demanding techniques. So far, the dominant techniques for developing emulators have been priors in the form of Gaussian stochastic processes (GASP) that were conditioned with a design data set of inputs and corresponding model outputs. In the context of dynamic models, this approach has two essential disadvantages: (i) these emulators do not consider our knowledge of the structure of the model, and (ii) they run into numerical difficulties if there are a large number of closely spaced input points as is often the case in the time dimension of dynamic models. To address both of these problems, a new concept of developing emulators for dynamic models is proposed. This concept is based on a prior that combines a simplified linear state space model of the temporal evolution of the dynamic model with Gaussian stochastic processes for the innovation terms as functions of model parameters and/or inputs. These innovation terms are intended to correct the error of the linear model at each output step. Conditioning this prior to the design data set is done by Kalman smoothing. This leads to an efficient emulator that, due to the consideration of our knowledge about dominant mechanisms built into the simulation model, can be expected to outperform purely statistical emulators at least in cases in which the design data set is small. The feasibility and potential difficulties of the proposed approach are demonstrated by the application to a simple hydrological model.