982 resultados para Mixed-integer quadratically-constrained programming
Resumo:
Variational inequalities and related problems may be solved via smooth bound constrained optimization. A comprehensive discussion of the important features involved with this strategy is presented. Complementarity problems and mathematical programming problems with equilibrium constraints are included in this report. Numerical experiments are commented. Conclusions and directions of future research are indicated.
Resumo:
This paper presents a Bi-level Programming (BP) approach to solve the Transmission Network Expansion Planning (TNEP) problem. The proposed model is envisaged under a market environment and considers security constraints. The upper-level of the BP problem corresponds to the transmission planner which procures the minimization of the total investment and load shedding cost. This upper-level problem is constrained by a single lower-level optimization problem which models a market clearing mechanism that includes security constraints. Results on the Garver's 6-bus and IEEE 24-bus RTS test systems are presented and discussed. Finally, some conclusions are drawn. © 2011 IEEE.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
At each outer iteration of standard Augmented Lagrangian methods one tries to solve a box-constrained optimization problem with some prescribed tolerance. In the continuous world, using exact arithmetic, this subproblem is always solvable. Therefore, the possibility of finishing the subproblem resolution without satisfying the theoretical stopping conditions is not contemplated in usual convergence theories. However, in practice, one might not be able to solve the subproblem up to the required precision. This may be due to different reasons. One of them is that the presence of an excessively large penalty parameter could impair the performance of the box-constraint optimization solver. In this paper a practical strategy for decreasing the penalty parameter in situations like the one mentioned above is proposed. More generally, the different decisions that may be taken when, in practice, one is not able to solve the Augmented Lagrangian subproblem will be discussed. As a result, an improved Augmented Lagrangian method is presented, which takes into account numerical difficulties in a satisfactory way, preserving suitable convergence theory. Numerical experiments are presented involving all the CUTEr collection test problems.
The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems
Resumo:
Augmented Lagrangian methods are effective tools for solving large-scale nonlinear programming problems. At each outer iteration, a minimization subproblem with simple constraints, whose objective function depends on updated Lagrange multipliers and penalty parameters, is approximately solved. When the penalty parameter becomes very large, solving the subproblem becomes difficult; therefore, the effectiveness of this approach is associated with the boundedness of the penalty parameters. In this paper, it is proved that under more natural assumptions than the ones employed until now, penalty parameters are bounded. For proving the new boundedness result, the original algorithm has been slightly modified. Numerical consequences of the modifications are discussed and computational experiments are presented.
Resumo:
Higher education has a responsibility to educate a democratic citizenry and recent research indicates civic engagement is on the decline in the United States. Through a mixed methodological approach, I demonstrate that the potential exists for well structured short-term international service-learning programming to develop college students’ civic identities. Quantitative analysis of questionnaire data, collected from American college students immediately prior to their participation in a short-term service-learning experience in Northern Ireland and again upon their return to the United States, revealed increases in civic accountability, political efficacy, justice oriented citizenship, and service-learning. Subsequent qualitative analysis of interview transcripts, student journals, and field notes suggested that facilitated critical reflection before, during, and after the experience promoted transformational learning. Emergent themes included: (a) responsibilities to others, (b) the value of international service-learning, (c) crosspollination of ideas, (d) stepping outside the daily routine to facilitate divergent thinking, and (e) the necessity of precursory thinking for sustaining transformations in thinking. The first theme, responsibilities to others, was further divided into subthemes of thinking beyond oneself, raising awareness of responsibility to others, and voting responsibly.
Resumo:
Linear programs, or LPs, are often used in optimization problems, such as improving manufacturing efficiency of maximizing the yield from limited resources. The most common method for solving LPs is the Simplex Method, which will yield a solution, if one exists, but over the real numbers. From a purely numerical standpoint, it will be an optimal solution, but quite often we desire an optimal integer solution. A linear program in which the variables are also constrained to be integers is called an integer linear program or ILP. It is the focus of this report to present a parallel algorithm for solving ILPs. We discuss a serial algorithm using a breadth-first branch-and-bound search to check the feasible solution space, and then extend it into a parallel algorithm using a client-server model. In the parallel mode, the search may not be truly breadth-first, depending on the solution time for each node in the solution tree. Our search takes advantage of pruning, often resulting in super-linear improvements in solution time. Finally, we present results from sample ILPs, describe a few modifications to enhance the algorithm and improve solution time, and offer suggestions for future work.
Resumo:
We address the design and implementation of visual paradigms for observing the execution of constraint logic programs, aiming at debugging, tuning and optimization, and teaching. We focus on the display of data in CLP executions, where representation for constrained variables and for the constrains themselves are seeked. Two tools, VIFID and TRIFID, exemplifying the devised depictions, have been implemented, and are used to showcase the usefulness of the visualizations developed.
Resumo:
Los sistemas empotrados son cada día más comunes y complejos, de modo que encontrar procesos seguros, eficaces y baratos de desarrollo software dirigidos específicamente a esta clase de sistemas es más necesario que nunca. A diferencia de lo que ocurría hasta hace poco, en la actualidad los avances tecnológicos en el campo de los microprocesadores de los últimos tiempos permiten el desarrollo de equipos con prestaciones más que suficientes para ejecutar varios sistemas software en una única máquina. Además, hay sistemas empotrados con requisitos de seguridad (safety) de cuyo correcto funcionamiento depende la vida de muchas personas y/o grandes inversiones económicas. Estos sistemas software se diseñan e implementan de acuerdo con unos estándares de desarrollo software muy estrictos y exigentes. En algunos casos puede ser necesaria también la certificación del software. Para estos casos, los sistemas con criticidades mixtas pueden ser una alternativa muy valiosa. En esta clase de sistemas, aplicaciones con diferentes niveles de criticidad se ejecutan en el mismo computador. Sin embargo, a menudo es necesario certificar el sistema entero con el nivel de criticidad de la aplicación más crítica, lo que hace que los costes se disparen. La virtualización se ha postulado como una tecnología muy interesante para contener esos costes. Esta tecnología permite que un conjunto de máquinas virtuales o particiones ejecuten las aplicaciones con unos niveles de aislamiento tanto temporal como espacial muy altos. Esto, a su vez, permite que cada partición pueda ser certificada independientemente. Para el desarrollo de sistemas particionados con criticidades mixtas se necesita actualizar los modelos de desarrollo software tradicionales, pues estos no cubren ni las nuevas actividades ni los nuevos roles que se requieren en el desarrollo de estos sistemas. Por ejemplo, el integrador del sistema debe definir las particiones o el desarrollador de aplicaciones debe tener en cuenta las características de la partición donde su aplicación va a ejecutar. Tradicionalmente, en el desarrollo de sistemas empotrados, el modelo en V ha tenido una especial relevancia. Por ello, este modelo ha sido adaptado para tener en cuenta escenarios tales como el desarrollo en paralelo de aplicaciones o la incorporación de una nueva partición a un sistema ya existente. El objetivo de esta tesis doctoral es mejorar la tecnología actual de desarrollo de sistemas particionados con criticidades mixtas. Para ello, se ha diseñado e implementado un entorno dirigido específicamente a facilitar y mejorar los procesos de desarrollo de esta clase de sistemas. En concreto, se ha creado un algoritmo que genera el particionado del sistema automáticamente. En el entorno de desarrollo propuesto, se han integrado todas las actividades necesarias para desarrollo de un sistema particionado, incluidos los nuevos roles y actividades mencionados anteriormente. Además, el diseño del entorno de desarrollo se ha basado en la ingeniería guiada por modelos (Model-Driven Engineering), la cual promueve el uso de los modelos como elementos fundamentales en el proceso de desarrollo. Así pues, se proporcionan las herramientas necesarias para modelar y particionar el sistema, así como para validar los resultados y generar los artefactos necesarios para el compilado, construcción y despliegue del mismo. Además, en el diseño del entorno de desarrollo, la extensión e integración del mismo con herramientas de validación ha sido un factor clave. En concreto, se pueden incorporar al entorno de desarrollo nuevos requisitos no-funcionales, la generación de nuevos artefactos tales como documentación o diferentes lenguajes de programación, etc. Una parte clave del entorno de desarrollo es el algoritmo de particionado. Este algoritmo se ha diseñado para ser independiente de los requisitos de las aplicaciones así como para permitir al integrador del sistema implementar nuevos requisitos del sistema. Para lograr esta independencia, se han definido las restricciones al particionado. El algoritmo garantiza que dichas restricciones se cumplirán en el sistema particionado que resulte de su ejecución. Las restricciones al particionado se han diseñado con una capacidad expresiva suficiente para que, con un pequeño grupo de ellas, se puedan expresar la mayor parte de los requisitos no-funcionales más comunes. Las restricciones pueden ser definidas manualmente por el integrador del sistema o bien pueden ser generadas automáticamente por una herramienta a partir de los requisitos funcionales y no-funcionales de una aplicación. El algoritmo de particionado toma como entradas los modelos y las restricciones al particionado del sistema. Tras la ejecución y como resultado, se genera un modelo de despliegue en el que se definen las particiones que son necesarias para el particionado del sistema. A su vez, cada partición define qué aplicaciones deben ejecutar en ella así como los recursos que necesita la partición para ejecutar correctamente. El problema del particionado y las restricciones al particionado se modelan matemáticamente a través de grafos coloreados. En dichos grafos, un coloreado propio de los vértices representa un particionado del sistema correcto. El algoritmo se ha diseñado también para que, si es necesario, sea posible obtener particionados alternativos al inicialmente propuesto. El entorno de desarrollo, incluyendo el algoritmo de particionado, se ha probado con éxito en dos casos de uso industriales: el satélite UPMSat-2 y un demostrador del sistema de control de una turbina eólica. Además, el algoritmo se ha validado mediante la ejecución de numerosos escenarios sintéticos, incluyendo algunos muy complejos, de más de 500 aplicaciones. ABSTRACT The importance of embedded software is growing as it is required for a large number of systems. Devising cheap, efficient and reliable development processes for embedded systems is thus a notable challenge nowadays. Computer processing power is continuously increasing, and as a result, it is currently possible to integrate complex systems in a single processor, which was not feasible a few years ago.Embedded systems may have safety critical requirements. Its failure may result in personal or substantial economical loss. The development of these systems requires stringent development processes that are usually defined by suitable standards. In some cases their certification is also necessary. This scenario fosters the use of mixed-criticality systems in which applications of different criticality levels must coexist in a single system. In these cases, it is usually necessary to certify the whole system, including non-critical applications, which is costly. Virtualization emerges as an enabling technology used for dealing with this problem. The system is structured as a set of partitions, or virtual machines, that can be executed with temporal and spatial isolation. In this way, applications can be developed and certified independently. The development of MCPS (Mixed-Criticality Partitioned Systems) requires additional roles and activities that traditional systems do not require. The system integrator has to define system partitions. Application development has to consider the characteristics of the partition to which it is allocated. In addition, traditional software process models have to be adapted to this scenario. The V-model is commonly used in embedded systems development. It can be adapted to the development of MCPS by enabling the parallel development of applications or adding an additional partition to an existing system. The objective of this PhD is to improve the available technology for MCPS development by providing a framework tailored to the development of this type of system and by defining a flexible and efficient algorithm for automatically generating system partitionings. The goal of the framework is to integrate all the activities required for developing MCPS and to support the different roles involved in this process. The framework is based on MDE (Model-Driven Engineering), which emphasizes the use of models in the development process. The framework provides basic means for modeling the system, generating system partitions, validating the system and generating final artifacts. The framework has been designed to facilitate its extension and the integration of external validation tools. In particular, it can be extended by adding support for additional non-functional requirements and support for final artifacts, such as new programming languages or additional documentation. The framework includes a novel partitioning algorithm. It has been designed to be independent of the types of applications requirements and also to enable the system integrator to tailor the partitioning to the specific requirements of a system. This independence is achieved by defining partitioning constraints that must be met by the resulting partitioning. They have sufficient expressive capacity to state the most common constraints and can be defined manually by the system integrator or generated automatically based on functional and non-functional requirements of the applications. The partitioning algorithm uses system models and partitioning constraints as its inputs. It generates a deployment model that is composed by a set of partitions. Each partition is in turn composed of a set of allocated applications and assigned resources. The partitioning problem, including applications and constraints, is modeled as a colored graph. A valid partitioning is a proper vertex coloring. A specially designed algorithm generates this coloring and is able to provide alternative partitions if required. The framework, including the partitioning algorithm, has been successfully used in the development of two industrial use cases: the UPMSat-2 satellite and the control system of a wind-power turbine. The partitioning algorithm has been successfully validated by using a large number of synthetic loads, including complex scenarios with more that 500 applications.
Resumo:
When studying genotype X environment interaction in multi-environment trials, plant breeders and geneticists often consider one of the effects, environments or genotypes, to be fixed and the other to be random. However, there are two main formulations for variance component estimation for the mixed model situation, referred to as the unconstrained-parameters (UP) and constrained-parameters (CP) formulations. These formulations give different estimates of genetic correlation and heritability as well as different tests of significance for the random effects factor. The definition of main effects and interactions and the consequences of such definitions should be clearly understood, and the selected formulation should be consistent for both fixed and random effects. A discussion of the practical outcomes of using the two formulations in the analysis of balanced data from multi-environment trials is presented. It is recommended that the CP formulation be used because of the meaning of its parameters and the corresponding variance components. When managed (fixed) environments are considered, users will have more confidence in prediction for them but will not be overconfident in prediction in the target (random) environments. Genetic gain (predicted response to selection in the target environments from the managed environments) is independent of formulation.
Resumo:
2010 Mathematics Subject Classification: 97D40, 97M10, 97M40, 97N60, 97N80, 97R80
Resumo:
Production to order and production in advance has been compared in many frameworks. In this paper we investigate a mixed production in advance version of the capacity-constrained Bertrand-Edgeworth duopoly game and determine the solution of the respective timing game. We show that a pure-strategy (subgame-perfect) Nash-equilibrium point exists for all possible orderings of moves. It is pointed out that unlike the production-to-order case, the equilibrium of the timing game lies at simultaneous moves. An analysis of the public firm's impact on social welfare is also carried out. All the results are compared to those of the production-to order version of the respective game.